K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2018

\(\frac{1}{a}+\frac{1}{b}=\frac{1}{ab}\)

=> \(\frac{a+b}{ab}=\frac{1}{ab}\)=> a+b=1 => a,b là số nguyên sao cho a+b=1

7 tháng 1 2018

\(\frac{1}{a}+\frac{1}{b}=\frac{1}{ab}\)

\(\frac{b}{ab}+\frac{a}{ab}=\frac{1}{ab}\)

\(\frac{b+a}{ab}=\frac{1}{ab}\)

\(\Rightarrow b+a=1\)

Vậy các giá trị nguyên của a,b phụ thuộc vào b + a = 1

8 tháng 10 2015

Ta có: \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)

=> \(\frac{b}{ab}-\frac{a}{ab}=\frac{1}{a-b}\)

=> \(\frac{b-a}{ab}=\frac{1}{a-b}\)

=> (b-a)(a-b)=ab.1

=> (b-a)(a-b)=ab (1)

Mà b-a và a-b trái dấu

Nên (b-a)(a-b)= -ab (2)

Từ (1), (2)=>không có cặp số nguyên x,y thỏa mãn

 

 

 

 

9 tháng 7 2016

điều kiện để tồn tại đẳng thức: a khác b

TH1: a>b suy ra 1/a<1/b suy ra 1/a-1/b <0 suy ra vế trái âm

 mà a>b suy ra a-b>0 suy ra 1/(a-b)>0 suy ra vế phải dương

từ đó suy ra với a>b thì k có cặp số dương a.b thoả mãn 1/a-1/b bằng 1/(a-b)

th2: a<b suy ra 1/a>1/b suy ra 1/a-1/b>0 suy ra vế trái dương

 mà a<b suy ra a-b<0 suy ra 1/(a-b)<0 suy ra vế phải âm

từ đó suy ra với a<b thì k có cặp số dương a.b thoả mãn 1/a-1/b bằng 1/(a-b)

vậy k có cặp số dương a.b thoả mãn 1/a-1/b bằng 1/(a-b)

22 tháng 9 2015

1. \(\frac{x}{y}=\frac{7}{17}\)

3. Có 6 cặp

4. 0 có cặp nào hết

Câu 2 mình không biết nha. Thông cảm

1/a - 1/b = 1/a-b <=> b ( a - b ) - a ( a - b ) = ab

<=> ab - b2 - a2 + ab = ab <=> a2 + b2 - ba = 0

a+b/2 > \(\sqrt{ab}\)<=> a2 + b2 + 2ab /4 \(\ge\)ab <=> a2 +b2 - ab \(\ge\)ab 

Do a,b > 0 nên ab > 0 => a2 + b2 - ab > 0 ( 2 )

Từ 1 và 2 => ko có tồn tại 2 số dương thỏa mãn đề bài

14 tháng 7 2016

1/a - 1/b = 1/a-b <=> b ( a - b ) - a ( a - b ) = ab

<=> ab - b2 - a2 + ab = ab <=> a2 + b2 - ba = 0

a+b/2 > √ab<=> a2 + b2 + 2ab /4 ab <=> a2 +b2 - ab ab 

Do a,b > 0 nên ab > 0 => a2 + b2 - ab > 0 ( 2 )

Từ 1 và 2 => ko có tồn tại 2 số dương thỏa mãn đề bài

24 tháng 12 2015

Giả sử tồn tại cặp số (a,b) thỏa \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)

=> \(\frac{b-a}{a.b}=\frac{1}{a-b}\) => (b-a)(a-b)=ab

=> -(a-b)(a-b) = ab

hay \(-\left(a-b\right)^2=ab\) (*)

Đẳng thức (*) không thể sảy ra vì vế trái luôn luôn âm và vế phải luôn luôn dương.

Vậy không tồn tại cặp số a,b dương nào thỏa mãn \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)