Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\dfrac{\left(20\cdot16-12\cdot8-48\cdot4\right)^2}{-2^9}=\dfrac{2^{10}}{-2^9}=-2\)
Giải:
Ta có:
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
\(\Rightarrow\frac{x^2}{3^2}=\frac{y^2}{4^2}=\frac{z^2}{5^2}\)
\(\Rightarrow\frac{-2x^2}{-2.9}=\frac{y^2}{16}=\frac{3z^2}{3.25}\)
\(\Rightarrow\frac{-2x^2}{-18}=\frac{y^2}{16}=\frac{3z^2}{75}\)
Theo tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{-2x^2}{-18}=\frac{y^2}{16}=\frac{3z^2}{75}=\frac{-2x^2+y^2-3z^2}{-18+16-75}=\frac{-77}{-77}=1\)
+ \(\frac{-2x^2}{-18}=1\Rightarrow x=3\)
+ \(\frac{y^2}{16}=1\Rightarrow y=4\)
+ \(\frac{3z^2}{75}=1\Rightarrow z=5\)
Vậy x=4; y=4; z=5
=\(\frac{\left(-2\right)^8}{5^4}\times\frac{\left(-1\right)^2}{2^2}\div\frac{\left(-1\right)^3}{5^3}\)
=\(\frac{2^8}{5^4}\times\frac{1}{2^2}\times\frac{-5^3}{1}\)
=\(\frac{-64}{5}\)
Bài 1:
a: Ta có: |3x-2|+|2y+1|=0
=>3x-2=0 và 2y+1=0
=>x=2/3 và y=-1/2
Bài 2:
a: ta có: \(\left(2x-5\right)^{x-3}=\left(2x-5\right)^2\)
\(\Leftrightarrow\left(2x-5\right)^{x-3}-\left(2x-5\right)^2=0\)
\(\Leftrightarrow\left(2x-5\right)^2\left[\left(2x-5\right)^{x-5}-1\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-5=0\\x-5=0\end{matrix}\right.\Leftrightarrow x\in\left\{\dfrac{5}{2};5\right\}\)
b: Ta có; \(x^{2x-1}=x^3\)
\(\Leftrightarrow x^3\left(x^{2x-4}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x-4=0\end{matrix}\right.\Leftrightarrow x\in\left\{0;2\right\}\)
Trả lời :
\(\frac{27^2}{25^3}\)
\(=\frac{729}{15625}\)
\(=0,46656\)