Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{\left(x^2\right)^2-10x^2+9}{x^4+6x^3+9x^2+2x^3+12x^2+18x+x^2+6x+9}\)
= \(\frac{\left(x^2-1\right)\left(x^2-3\right)}{x^2\left(x^2+6x+9\right)+2x\left(x^2+6x+9\right)+\left(x^2+6x+9\right)}\)
= \(\frac{\left(x-1\right)\left(x+1\right)\left(x-3\right)\left(x+3\right)}{\left(x^2+6x+9\right)\left(x^2+2x+1\right)}\)
= \(\frac{\left(x-1\right)\left(x+1\right)\left(x-3\right)\left(x+3\right)}{\left(x+3\right)^2.\left(x+1\right)^2}\)
= \(\frac{\left(x-1\right)\left(x+1\right)\left(x-3\right)\left(x+3\right)}{\left(x+3\right)\left(x+3\right)\left(x+1\right)\left(x+1\right)}\)
= \(\frac{\left(x-1\right)\left(x-3\right)}{\left(x+1\right)\left(x+3\right)}\)
\(A=\left(\frac{4x}{x^2-4}+\frac{2x-4}{x+2}\right).\frac{x+2}{2x}+\frac{2}{2-x}\\=\left(\frac{4x}{x^2-4}+\frac{\left(2x-4\right)\left(x-2\right)}{x^2-4}\right)\frac{x+2}{2x}+\frac{2}{2-x}=\left(\frac{4x}{x^2-4}+\frac{2x^2-4x-4x+8}{x^2-4}\right) \frac{x+2}{2x}+\frac{2}{2-x}\)
\(=\left(\frac{4x+2x^2-8x+8}{x^2-4}\right).\frac{x+2}{2x}+\frac{2}{2-x}\\ =\frac{2x\left(x+2\right)-8\left(x-1\right)}{x^2-4}.\frac{x+2}{2x}+\frac{2}{2-x}\)
b: \(=\dfrac{4x\left(x-1\right)\left(x+1\right)}{6x\left(x-1\right)}=\dfrac{2\left(x+1\right)}{3}\)
c: \(=\dfrac{\left(5-x-1\right)\left(5+x+1\right)}{\left(x+6\right)^2}=\dfrac{\left(4-x\right)\left(x+6\right)}{\left(x+6\right)^2}=\dfrac{4-x}{x+6}\)
d: \(=\dfrac{\left(x+2\right)\left(x+3\right)}{\left(x+2\right)^2}=\dfrac{x+3}{x+2}\)
Nguyễn Huệ Lam ơi cái câu b bn làm sai r cái đoạn đặt ntu chung là 2 x đầu tiên ấy bn
a)
\(\frac{9-\left(x+5\right)^2}{x^2+4x+4}=\frac{3^2-\left(x+5\right)^2}{x^2+2.x.2+2^2}=\frac{\left(3+x+5\right)\left(3-x-5\right)}{\left(x+2\right)^2}\)
\(=\frac{\left(x+8\right)\left(x-2\right)}{\left(x+2\right)^2}\)
b)
\(\frac{32x-8x^2+2x^3}{x^3+64}=\frac{2x\left(x^2-8x+16\right)}{x^3+4^3}=\frac{2x\left(x^2-2.x.4+4^2\right)}{\left(x+4\right)\left(x^2-4x+16\right)}\)
\(=\frac{2x\left(x-4\right)^2}{\left(x+4\right)\left(x^2-4x+16\right)}\)
Bạn viết biểu thức A ra đi rồi bọn mình mới làm được chứ -.-
Đk : \(x\ne\pm3\)
Để B>A
\(\Leftrightarrow\frac{3}{x+3}>4\)
Rõ ràng: \(x+3>0\)
\(\Rightarrow\frac{3}{x+3}>4\)
\(\Leftrightarrow3>4\left(x+3\right)\)
\(\Leftrightarrow3>4x+12\)
\(\Leftrightarrow-9>4x\)
\(\Leftrightarrow x< \frac{-9}{4}\)
KL: \(x\in Z,x< \frac{-9}{4},x\ne\pm3\)
A=(8xy-6x^2)/(12y^2-9xy)
A=2x(4y-3x)/3y(4y-3x)
A=2x/3y
B=(2x^3-18x)/(x^4-81)
B=2x(x^2-9)/(x^2-9)(x^2+9)
B=2x/(x^2+9)
C=(x^2-x-30)/(x^2-25)
C=(x^2+6x-5x-30)/(x^2-25)
C=(x(x+6)-5(x+6))/(x-5)(x+5)
C=(x+6)(x-5)/(x-5)(x+5)
C=(x+6)/(x+5)
a, \(27x^3-27x^2+18x-4\)
\(=27x^3-9x^2-18x^2+6x+12x-4\)
\(=9x^2\left(3x-1\right)-6x\left(3x-1\right)+4\left(3x-1\right)\)
\(=\left(3x-1\right)\left(9x^2-6x+4\right)\)
b, \(2x^3-x^2+5x+3\)
\(=2x^3+x^2-2x^2-x+6x+3\)
\(=x^2\left(2x+1\right)-x\left(2x+1\right)+3\left(2x+1\right)\)
\(=\left(x^2-x+3\right)\left(2x+1\right)\)
c, \(\left(x^2-x\right)^2+16\)
\(=x^4-2x^3+x^2+16\)
P/S: Nếu em chưa học hệ số bất định thì chịu thôi, câu này phải dùng hệ số bất định (đọc tham khảo ở cuốn Nâng cao và Phát triển Toán 8 tập 1 của tác giả Vũ Hữu Bình nhé) (Mà có khi đề bài sai á)
\(\frac{2x^4+6x^3+18x^2}{x^4-27x}=\frac{2x^2.\left(x^2+3x+9\right)}{x.\left(x^3-27\right)}\)
\(=\frac{2x^2.\left(x^2+3x+9\right)}{x.\left(x-3\right)\left(x^2+3x+9\right)}=\frac{2x}{x-3}\)