Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{2^2}{1.3}+\frac{3^2}{2.4}+\frac{4^2}{3.5}+...+\frac{99^2}{98.100}\)
\(A=\frac{2.2}{1.3}+\frac{3.3}{2.4}+\frac{4.4}{3.5}+...+\frac{99.99}{98.100}\)
\(A=\frac{2}{1}+\frac{99}{100}\)
\(A=\frac{200}{100}+\frac{99}{100}=\frac{299}{100}\)
Hok tốt
a) Bạn Nguyễn Lê Phước Thịnh giải rồi nha bạn :)
b) (-9-x+2)+9
=-9-x+2+9
=-9+(-x)+2+9
=(-x)+(-9+2+9)
=(-x)+2
c) 66-(12-x)+(12-66)
=66-12+x+12-66
=x
d) 15-(15-x+93)+93
=15-15+x-93+93
=x
M = 5 + 53 + 55 + ... + 547 + 549
52M = 52(5 + 53 + 55 + ... + 547 + 549)
25M = 53 + 55 + 57 + ... + 549 + 551
25M - M = ( 53 + 55 + 57 + ... + 549 + 551) - (5 + 53 + 55 + ... + 547 + 549)
24M = 551 - 5
M = \(\frac{5^{51}-5}{24}\)
\(a,x-7\frac{5}{8}=1\frac{1}{4}\)
=> \(x-\frac{61}{8}=\frac{5}{4}\)
=> \(x=\frac{5}{4}+\frac{61}{8}\)
=> \(x=\frac{10}{8}+\frac{61}{8}=\frac{71}{8}=8\frac{7}{8}\)
\(b,x+7\frac{5}{8}=9\frac{1}{4}\)
=> \(x+\frac{43}{5}=\frac{37}{4}\)
=> \(x=\frac{37}{4}-\frac{43}{5}=\frac{13}{20}\)
\(c,\left[x-7\frac{5}{8}\right]:\frac{1}{2}=3\)
=> \(\left[x-\frac{61}{8}\right]=3\cdot\frac{1}{2}\)
=> \(\left[x-\frac{61}{8}\right]=\frac{3}{2}\)
=> \(x-\frac{61}{8}=\frac{3}{2}\)
=> \(x=\frac{3}{2}+\frac{61}{8}=\frac{12}{8}+\frac{61}{8}=\frac{73}{8}=9\frac{1}{8}\)
d, \(\frac{x}{1\cdot3}+\frac{x}{3\cdot5}+\frac{x}{5\cdot7}+...+\frac{x}{97\cdot99}=99\)
=> \(\frac{x}{2}\left[\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{97\cdot99}\right]=99\)
=> \(\frac{x}{2}\left[1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\right]=99\)
=> \(\frac{x}{2}\left[1-\frac{1}{99}\right]=99\)
=> \(\frac{x}{2}\cdot\frac{98}{99}=99\)
=> \(\frac{98x}{198}=99\)
=> 98x = 99 . 198
=> 98x = 19602
=> x = 19602 : 98 = 9801/49
a) \(x-7\frac{5}{8}=1\frac{1}{4}\)
=> \(x=\frac{5}{4}+\frac{61}{8}\)
=> \(x=\frac{71}{8}\)
b) \(x+7\frac{5}{8}=9\frac{1}{4}\)
=> \(x=\frac{37}{4}-\frac{61}{8}\)
=> \(x=\frac{13}{8}\)
c) \(\left(x-7\frac{5}{8}\right):\frac{1}{2}=3\)
=> \(x-\frac{61}{8}=3.\frac{1}{2}\)
=> \(x-\frac{61}{8}=\frac{3}{2}\)
=> \(x=\frac{3}{2}+\frac{61}{8}\)
=> \(x=\frac{73}{8}\)
d) \(\frac{x}{1.3}+\frac{x}{3.5}+...+\frac{x}{97.99}=99\)
=> \(x.\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{97.99}\right)=99\)
=> \(\frac{1}{2}x\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{97}-\frac{1}{99}\right)=99\)
=> \(x\left(1-\frac{1}{99}\right)=99:\frac{1}{2}\)
=> \(x.\frac{98}{99}=198\)
=> \(x=198:\frac{98}{99}=\frac{9801}{49}\)