Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=-\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{25.27}\right)-\frac{1}{27}\)
\(=-\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{25}-\frac{1}{27}\right)-\frac{1}{27}\)
\(=-\left(1-\frac{1}{27}\right)-\frac{1}{27}\)
\(=-1+\frac{1}{27}-\frac{1}{27}\)
\(=-1\)
A=\(\dfrac{2}{1.3}-\dfrac{2}{3.5}-\dfrac{2}{5.7}-.....-\dfrac{2}{23.25}-\dfrac{1}{27}\)
A=\(\dfrac{2}{3}-\left(\dfrac{2}{3.5}+\dfrac{2}{5.7}+....+\dfrac{2}{23.25}\right)-\dfrac{1}{27}\)
A=\(\dfrac{2}{3}-\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+......+\dfrac{1}{23}-\dfrac{1}{25}\right)-\dfrac{1}{27}\)
A=\(\dfrac{2}{3}-\left(\dfrac{1}{3}-\dfrac{1}{25}\right)-\dfrac{1}{27}\)
A=\(\dfrac{2}{3}-\dfrac{22}{75}-\dfrac{1}{27}\)
A=\(\dfrac{227}{675}\)
\(=-\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{25.27}\right)-\frac{2}{27}\)
\(=-\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{25}-\frac{1}{27}\right)-\frac{2}{27}\)
\(=-\left(1-\frac{1}{27}\right)-\frac{2}{27}\)
\(=-1+\frac{1}{27}-\frac{2}{27}\)
\(=-\frac{28}{27}\)
\(\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{19\cdot21}-\frac{x}{14}=\frac{2}{-7}\)
\(\frac{1}{2}\left(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{19\cdot21}\right)-\frac{x}{14}=\frac{2}{-7}\)
\(\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{19}-\frac{1}{21}\right)-\frac{x}{14}=\frac{2}{-7}\)
\(\frac{1}{2}\left(1-\frac{1}{21}\right)-\frac{x}{14}=\frac{2}{-7}\)
\(\frac{1}{2}\cdot\frac{20}{21}-\frac{x}{14}=\frac{2}{-7}\)
\(\frac{10}{21}-\frac{x}{14}=\frac{2}{-7}\)
\(\frac{x}{14}=\frac{10}{21}-\frac{2}{-7}\)
\(\frac{x}{14}=\frac{16}{21}\)
\(\Rightarrow x\cdot=21=14\cdot16\)
\(\Rightarrow x\cdot21=224\)
\(\Rightarrow x=\frac{224}{21}\)
\(B=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{19}-\dfrac{1}{21}\\ B=1-\dfrac{1}{21}=\dfrac{20}{21}\)
\(A=-\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{25.27}\right)-\frac{1}{27}\)
\(=-\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{25}-\frac{1}{27}\right)-\frac{1}{27}\)
\(=-\left(1-\frac{1}{27}\right)-\frac{1}{27}\)
\(=-1+\frac{1}{27}-\frac{1}{27}\)
\(=-1\)
1/2015