Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (x+3)(x^2-3x+9)-(54+x^3)
= x^3- 3x^2+9x+3x^2-9x+27-54-x63
= -27
b) (2x + y)(4x^2 – 2xy + y^2) – (2x – y)(4x^2+ 2xy + y^2)
= (2x + y)[(2x)^2 – 2x.y + y^2] – (2x – y)[(2x)^2 + 2x.y + y^2]
= [(2x)3^3+ y^3] – [(2x)^3 – y^3]
= (2x)^3 + y^3 – (2x)^3 + y^3
= 2y^3
a)(x+3)(X^2-3x+9)-(54+x^3)
= \(x^3\)+ \(3^3 \) - 54 -\(x^3\)
= 27- 54
= -27
b)(2x+y)(4x^2-2xy+y^2)-(2x-y)(4x^2+2xy+y^2)
= \((2x)^3\) + \(y^3\) - [\((2x)^3\) - \(y^3\) ]
= \(8x^3\) + \(y^3\) - \(8x^3\) + \(y^3\)
= \(2y^3\)
b) \(\left(2x+y\right)\left(4x^2-2xy+y^2\right)-\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)
\(=\left(2x+y\right)\left(4x^2-2xy+y^2\right)+\left(2x+y\right)\left(4x^2+2xy+y^2\right)\)
\(=\left(2x+y\right)\left(4x^2-2xy+y^2+4x^2+2xy+y^2\right)\)
\(=\left(2x+y\right)\left(8x^2+2y^2\right)\)
\(=\left(2x+y\right)\left(4x+y\right).2xy\)
Bài 1:
- a,(2+xy)^2=4+4xy+x^2y^2
- b,(5-3x)^2=25-30x+9x^2
- d,(5x-1)^3=125x^3 - 75x^2 + 15x^2 - 1
a ) \(\left(x+3\right)\left(x^2-3x+9\right)-\left(5x+x^3\right)\)
\(=\left(x+3\right)\left(x^2-3x+3^2\right)-\left(54+x^3\right)\)
\(=x^3+3^3-\left(54+x^3\right)\)
\(=x^3+27-54-x^3\)
\(=-27\)
b ) \(\left(2x+y\right)\left(4x^2-2xy+y^2\right)-\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)
\(=\left(2x+y\right)\left[\left(2x\right)^2-2.x.y+y^2\right]-\left(2x-y\right)\left[\left(2x\right)^2+2.x.y+y^2\right]\)
\(=\left[\left(2x\right)^3+y^3\right]-\left[\left(2x\right)^3-y^3\right]\)
\(=\left(2x\right)^3+y^3-\left(2x\right)^3+y^3\)
\(=2y^3\)
a ) (x+3)(x2−3x+9)−(5x+x3)(x+3)(x2−3x+9)−(5x+x3)
=(x+3)(x2−3x+32)−(54+x3)=(x+3)(x2−3x+32)−(54+x3)
=x3+33−(54+x3)=x3+33−(54+x3)
=x3+27−54−x3=x3+27−54−x3
=−27=−27
b ) (2x+y)(4x2−2xy+y2)−(2x−y)(4x2+2xy+y2)(2x+y)(4x2−2xy+y2)−(2x−y)(4x2+2xy+y2)
=(2x+y)[(2x)2−2.x.y+y2]−(2x−y)[(2x)2+2.x.y+y2]=(2x+y)[(2x)2−2.x.y+y2]−(2x−y)[(2x)2+2.x.y+y2]
=[(2x)3+y3]−[(2x)3−y3]=[(2x)3+y3]−[(2x)3−y3]
=(2x)3+y3−(2x)3+y3=(2x)3+y3−(2x)3+y3
=2y3
a) ( 5x - y )( 25x2 + 5xy + y2 ) = ( 5x )3 - y3 = 125x3 - y3
b) ( x - 3 )( x2 + 3x + 9 ) - ( 54 + x3 ) = x3 - 33 - 54 - x3 = -27 - 54 = -81
c) ( 2x + y )( 4x2 - 2xy + y2 ) - ( 2x - y )( 4x2 + 2xy + y2 ) = ( 2x )3 + y3 - [ ( 2x )3 - y3 ]= 8x3 + y3 - 8x3 + y3 = 2y3
d) ( x + y )2 + ( x - y )2 + ( x + y )( x - y ) - 3x2 = x2 + 2xy + y2 + x2 - 2xy + y2 + x2 - y2 - 3x2 = y2
e) ( x - 3 )3 - ( x - 3 )( x2 + 3x + 9 ) + 6( x + 1 )2
= x3 - 9x2 + 27x - 27 - ( x3 - 33 ) + 6( x2 + 2x + 1 )
= x3 - 9x2 + 27x - 27 - x3 + 27 + 6x2 + 12x + 6
= -3x2 + 39x + 6
= -3( x2 - 13x - 2 )
f) ( x + y )( x2 - xy + y2 ) + ( x - y )( x2 + xy + y2 ) - 2x3
= x3 + y3 + x3 - y3 - 2x3
= 0
g) x2 + 2x( y + 1 ) + y2 + 2y + 1
= x2 + 2x( y + 1 ) + ( y2 + 2y + 1 )
= x2 + 2x( y + 1 ) + ( y + 1 )2
= ( x + y + 1 )2
= [ ( x + y ) + 1 ]2
= ( x + y )2 + 2( x + y ) + 1
= x2 + 2xy + y2 + 2x + 2y + 1
a) (x+y+x_y).(x+y_x+y)
b ) (( x + y )+(x _ y))2
d ) 8x3 + y3 _ 8x3 + y3 =2y3