Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(1-\frac{1}{21}\right).\left(1-\frac{1}{28}\right).\left(1-\frac{1}{36}\right)...\left(1-\frac{1}{1326}\right)\)
\(A=\frac{20}{21}.\frac{27}{28}.\frac{35}{36}...\frac{1325}{1326}\)
\(A=\frac{40}{42}.\frac{54}{56}.\frac{70}{72}...\frac{2650}{2652}\)
\(A=\frac{5.8}{6.7}.\frac{6.9}{7.8}.\frac{7.10}{8.9}...\frac{50.53}{51.52}\)
\(A=\frac{5.6.7...50}{6.7.8...51}.\frac{8.9.10...53}{7.8.9...52}\)
\(A=\frac{5}{51}.\frac{53}{7}\)
\(A=\frac{265}{357}\)
28^15x3^17/84^16
=28^15x3^17/(28x3)^16
=28^15x3^17/28^16x28^16
=3/28
Câu 1:
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{4}=\dfrac{b}{3}=\dfrac{a-b}{4-3}=12\)
Do đó: a=48
Ta có bảng xét dấu :
x | 1 | 2 | |||
x-1 | - | 0 | + | \(|\) | + |
x-2 | - | \(|\) | - | 0 | + |
+) Nếu \(x< 1\Leftrightarrow|x-1|=1-x\)
\(|x-2|=2-x\)
\(A=1-x+2-x\)
\(A=3-2x\)
+) Nếu \(1\le x< 2\Leftrightarrow|x-1|=x-1\)
\(|x-2|=2-x\)
\(A=x-1+2-x\)
\(A=1\)
+) Nếu \(x\ge2\Leftrightarrow|x-1|=x-1\)
\(|x-2|=x-2\)
\(A=x-1+x-2\)
\(A=2x-3\)
Nếu \(x< 1\) thì \(\left|x-1\right|=1-x\) ; \(\left|x-2\right|=2-x\)
Khi đó phương trình trở thành:
\(A=1-x+2-x=3-2x\)
Nếu \(1\le x\le2\)thì \(\left|x-1\right|=x-1\); \(\left|x-2\right|=2-x\)
Khi đó phương trình trở thành:
\(A=x-1+2-x=1\)
Nếu \(x>2\)thì \(\left|x-1\right|=x-1\); \(\left|x-2\right|=x-2\)
Khi đó phương trình trở thành:
\(A=x-1+x-2=2x-3\)
(+) TH1 : -1 >=x ta có
E = l x - 3l + lx + 1l = 3-x + ( -x - 1) = 3- x - x - 1 = 2 - 2x
(+) TH2 -1< x <= 3 ta có
E = 3 - x + x + 1 = 4
(+) TH3 x> 3 ta có:
E = x - 3 + x + 1 = 2x - 2