Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}}{\sqrt{x}+2}\right)\cdot\dfrac{x-4}{4-\sqrt{x}}\)
a: \(P=\dfrac{x+2\sqrt{x}+x-2\sqrt{x}}{x-4}\cdot\dfrac{x-4}{4-\sqrt{x}}=\dfrac{2x}{4-\sqrt{x}}\)
b: Để P>3 thì P-3>0
\(\Leftrightarrow-\dfrac{2x}{\sqrt{x}-4}-3>0\)
\(\Leftrightarrow\dfrac{-2x-3\sqrt{x}+12}{\sqrt{x}-4}>0\)
\(\Leftrightarrow\dfrac{5\sqrt{x}-12}{\sqrt{x}-4}< 0\)
=>12/5<căn x<4
=>144/25<x<16
\(a,A=4\sqrt{3}-5\sqrt{3}+2-\sqrt{3}=2-2\sqrt{3}\\ B=\dfrac{x+2\sqrt{x}+8+2\sqrt{x}-8}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+4\right)}=\dfrac{\sqrt{x}\left(\sqrt{x}+4\right)}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+4\right)}=\dfrac{\sqrt{x}}{\sqrt{x}-4}\\ b,B-\dfrac{1}{2}A=\dfrac{\sqrt{x}}{\sqrt{x}-4}-\dfrac{1}{2}\left(2-2\sqrt{3}\right)=0\\ \Leftrightarrow\dfrac{\sqrt{x}}{\sqrt{x}-4}=1+\sqrt{3}\\ \Leftrightarrow\sqrt{x}=\left(1+\sqrt{3}\right)\left(\sqrt{x}-4\right)\Leftrightarrow\sqrt{x}=\sqrt{x}-4\sqrt{3}+\sqrt{3x}-4\\ \Leftrightarrow\sqrt{3x}=4\sqrt{3}+4\\ \Leftrightarrow\sqrt{x}=\dfrac{4\sqrt{3}+4}{\sqrt{3}}\\ \Leftrightarrow\sqrt{x}=\dfrac{12+4\sqrt{3}}{3}\\ \Leftrightarrow x=\dfrac{192+96\sqrt{3}}{9}=\dfrac{64+32\sqrt{3}}{3}\)
a) Ta có: \(A=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right):\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{x-1}\right)\)
\(=\left(\dfrac{x}{\sqrt{x}\left(\sqrt{x}-1\right)}-\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\dfrac{\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}+\dfrac{2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)
\(=\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\)
\(=\dfrac{x-1}{\sqrt{x}}\)
b) Ta có: \(x=4+2\sqrt{3}\)
\(\Leftrightarrow x=3+2\cdot\sqrt{3}\cdot1+1\)
hay \(x=\left(\sqrt{3}+1\right)^2\)
Thay \(x=\left(\sqrt{3}+1\right)^2\) vào biểu thức \(A=\dfrac{x-1}{\sqrt{x}}\), ta được:
\(A=\dfrac{\left(\sqrt{3}+1\right)^2-1}{\sqrt{\left(\sqrt{3}+1\right)^2}}=\dfrac{4+2\sqrt{3}-1}{\sqrt{3}+1}\)
\(\Leftrightarrow A=\dfrac{\left(3+2\sqrt{3}\right)\left(\sqrt{3}-1\right)}{2}=\dfrac{3\sqrt{3}-3+6-2\sqrt{3}}{2}\)
\(\Leftrightarrow A=\dfrac{\sqrt{3}+3}{2}\)
Vậy: Khi \(x=4+2\sqrt{3}\) thì \(A=\dfrac{\sqrt{3}+3}{2}\)
\(\sqrt{2-\sqrt{3}}\left(\sqrt{6}+\sqrt{2}\right)=\sqrt{4-2\sqrt{3}}\left(\sqrt{3}+1\right)=\sqrt{\left(\sqrt{3}-1\right)^2}\left(\sqrt{3}+1\right)\)
\(=\left|\sqrt{3}-1\right|\left(\sqrt{3}+1\right)=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)=3-1=2\)
\(\dfrac{x-25}{\sqrt{x}-5}-\dfrac{x+4\sqrt{x}+4}{\sqrt{x}+2}=\dfrac{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}{\sqrt{x}-5}-\dfrac{\left(\sqrt{x}+2\right)^2}{\sqrt{x}+2}\)
\(=\sqrt{x}+5-\left(\sqrt{x}+2\right)=5-2=3\)
a: Ta có: \(\sqrt{2-\sqrt{3}}\cdot\left(\sqrt{6}+\sqrt{2}\right)\)
\(=\sqrt{4-2\sqrt{3}}\cdot\left(\sqrt{3}+1\right)\)
\(=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)\)
=3-1
=2
b: Ta có: \(\dfrac{x-25}{\sqrt{x}-5}-\dfrac{x+4\sqrt{x}+4}{\sqrt{x}+2}\)
\(=\sqrt{x}+5-\sqrt{x}-2\)
=3
a/ \(A=\left(\dfrac{\sqrt{x}}{x-4}+\dfrac{2}{2-\sqrt{x}}+\dfrac{1}{\sqrt{x}+2}\right):\left(\sqrt{x}-2+\dfrac{10-x}{\sqrt{x}+2}\right)\)
\(=\left(\dfrac{\sqrt{x}-2\left(\sqrt{x}+2\right)+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right):\left(\dfrac{x-4+10-x}{\sqrt{x}+2}\right)\)
\(=\dfrac{-6}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{\sqrt{x}+2}{6}=\dfrac{-1}{\sqrt{x}-2}\)
b/ \(A>0\Leftrightarrow\dfrac{-1}{\sqrt{x}-2}>0\)
Ta thấy: - 1 < 0 nên để A > 0 thì:
\(\sqrt{x}-2< 0\)\(\Leftrightarrow\sqrt{x}< 2\Leftrightarrow x< 4\)
kết hợp với đkxđ: => \(0\le x< 4\)
\(A=x-4-\sqrt{x^4-8x^2+16}=x-4-\sqrt{[\left(x-2\right)\left(x+2\right)]^2}\)
\(A=x-4-\left(x-2\right)\left(x+2\right)=x-4-\left(x^2-4\right)=-x^2+x\)
\(B=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}.\left(\sqrt{a}+\sqrt{b}\right)=a-b\)
Bài 1:
a: \(A=\left(\sqrt{x}+\sqrt{y}-\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\right)\cdot\dfrac{\sqrt{x}+\sqrt{y}}{x-\sqrt{xy}+y}\)
\(=\dfrac{x+2\sqrt{xy}+y-x-\sqrt{xy}-y}{\sqrt{x}+\sqrt{y}}\cdot\dfrac{\sqrt{x}+\sqrt{y}}{x-\sqrt{xy}+y}\)
\(=\dfrac{\sqrt{xy}}{x-\sqrt{xy}+y}\)
b: \(\sqrt{xy}>=0;x-\sqrt{xy}+y>0\)
Do đó: A>=0
a) Ta có: \(M=\left(\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\right)\cdot\dfrac{x+3\sqrt{x}}{7-\sqrt{x}}\)
\(=\left(\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}-\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\right)\cdot\dfrac{x+3\sqrt{x}}{7-\sqrt{x}}\)
\(=\dfrac{x-9-\left(x-2\sqrt{x}+\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{-\left(\sqrt{x}-7\right)}\)
\(=\dfrac{x-9-x+\sqrt{x}+2}{\sqrt{x}-2}\cdot\dfrac{-\sqrt{x}}{\sqrt{x}-7}\)
\(=\dfrac{\sqrt{x}-7}{\sqrt{x}-2}\cdot\dfrac{-\sqrt{x}}{\sqrt{x}-7}\)
\(=\dfrac{-\sqrt{x}}{\sqrt{x}-2}\)
b) Ta có: \(x^2-4x=0\)
\(\Leftrightarrow x\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=4\left(loại\right)\end{matrix}\right.\)
Thay x=0 vào biểu thức \(M=\dfrac{-\sqrt{x}}{\sqrt{x}-2}\), ta được:
\(M=\dfrac{-\sqrt{0}}{\sqrt{0}-2}=-\dfrac{0}{-2}=0\)
Vậy: Khi \(x^2-4x=0\) thì M=0
Mẫu thức chung là (√x+1)(√x−4)
Bạn quy đồng lên rồi tính là ra
P/s: mình hơi lười. Bạn thông cảm nhé