K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2021

undefined

Tham khảo cái này nhé e

nguồn Cho đường tròn (O). Từ điểm M nằm ngoài (O) vẽ tiếp tuyến MD, MC với (O) (C, D là các tiếp điểm). Vẽ cát tuyến MAB không đi qua tâm O, A nằm giữa M và B. Tia phân giác góc ACB cắt AB ở E. a) Chứng minh MC = ME. b) Chứng minh DE là tia phân giác góc ADB - Toán học Lớp 9 - Bài tập Toán học Lớp 9 - Giải bài tập Toán học Lớp 9 | Lazi.vn - Cộng đồng Tri thức & Giáo dục

4 tháng 3 2021

E cảm ơn a

18 tháng 12 2017

Giải bài 40 trang 83 SGK Toán 9 Tập 2 | Giải toán lớp 9

Tia phân giác AD cắt (O) tại E.

Giải bài 40 trang 83 SGK Toán 9 Tập 2 | Giải toán lớp 9 là góc có đỉnh nằm bên trong đường tròn

Giải bài 40 trang 83 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 40 trang 83 SGK Toán 9 Tập 2 | Giải toán lớp 9 là góc tạo bởi tiếp tuyến AS và dây AE

Giải bài 40 trang 83 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 40 trang 83 SGK Toán 9 Tập 2 | Giải toán lớp 9 lần lượt là các góc nội tiếp chắn các cung Giải bài 40 trang 83 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 40 trang 83 SGK Toán 9 Tập 2 | Giải toán lớp 9

Từ (1); (2) và (3) suy ra Giải bài 40 trang 83 SGK Toán 9 Tập 2 | Giải toán lớp 9

⇒ ΔSAD cân tại S

⇒ SA = SD.

23 tháng 6 2017

Giải bài 40 trang 83 SGK Toán 9 Tập 2 | Giải toán lớp 9

Tia phân giác AD cắt (O) tại E.

Giải bài 40 trang 83 SGK Toán 9 Tập 2 | Giải toán lớp 9 là góc có đỉnh nằm bên trong đường tròn

Giải bài 40 trang 83 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 40 trang 83 SGK Toán 9 Tập 2 | Giải toán lớp 9 là góc tạo bởi tiếp tuyến AS và dây AE

Giải bài 40 trang 83 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 40 trang 83 SGK Toán 9 Tập 2 | Giải toán lớp 9 lần lượt là các góc nội tiếp chắn các cung Giải bài 40 trang 83 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 40 trang 83 SGK Toán 9 Tập 2 | Giải toán lớp 9

Từ (1); (2) và (3) suy ra Giải bài 40 trang 83 SGK Toán 9 Tập 2 | Giải toán lớp 9

⇒ ΔSAD cân tại S

⇒ SA = SD.

Kiến thức áp dụng

+ Số đo của góc có đỉnh ở bên trong đường tròn bằng nửa tổng số đo hai cung bị chắn.

+ Số đo của góc tạo bởi tiếp tuyến và dây cung bằng nửa số đo cung bị chắn.

+ Các góc nội tiếp bằng nhau chắn các cung bằng nhau.

a: góc ABH=góc ABM=1/2*sđ cung BM

góc AEB=1/2(sđ cung BC+sđ cung DM)

=1/2(sđ cung BC+sđ cung MC)

=1/2*sđ cung BM

=>góc AEB=góc ABE

=>ΔABE cân tại A

mà AH là phân giác

nên AH vuông góc với BE

b: Xét ΔMDE và ΔMBD có

góc MDE=góc MBD

góc DME chung

Do đó: ΔMDE đồng dạng với ΔMBD

=>MD/MB=ME/MD

=>MD^2=MB*ME

a: góc AEB=(sd cung BC+sđ cung DM)/2

=1/2(sđ cung BC+sđ cung CM)

=1/2*sđ cung BM

=góc ABM

=góc ABE

=>ΔABE cân tại A

mà AH là phân giác

nen AH vuông góc với BE

b: Xét ΔMDE và ΔMBD có

góc MDE=góc MBD

góc DME chung

=>ΔMDE đồng dạng với ΔMBD

=>MD/MB=ME/MD

=>MD^2=MB*ME