K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2020

hoc gioi the hihiihihihhhihihihihiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

7 tháng 4 2020

,mnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

NV
15 tháng 12 2020

\(\sqrt{2-f\left(x\right)}=f\left(x\right)\Leftrightarrow\left\{{}\begin{matrix}f\left(x\right)\ge0\\f^2\left(x\right)+f\left(x\right)-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}f\left(x\right)=1\\f\left(x\right)=-2< 0\left(loại\right)\end{matrix}\right.\) 

\(\Rightarrow f\left(1\right)=f\left(2\right)=f\left(3\right)=1\)

\(\sqrt{2g\left(x\right)-1}+\sqrt[3]{3g\left(x\right)-2}=2.g\left(x\right)\)

\(VT=1.\sqrt{2g\left(x\right)-1}+1.1\sqrt[3]{3g\left(x\right)-2}\)

\(VT\le\dfrac{1}{2}\left(1+2g\left(x\right)-1\right)+\dfrac{1}{3}\left(1+1+3g\left(x\right)-2\right)\)

\(\Leftrightarrow VT\le2g\left(x\right)\)

Dấu "=" xảy ra khi và chỉ khi \(g\left(x\right)=1\)

\(\Rightarrow g\left(0\right)=g\left(3\right)=g\left(4\right)=g\left(5\right)=1\)

Để các căn thức xác định \(\Rightarrow\left\{{}\begin{matrix}f\left(x\right)-1\ge0\\g\left(x\right)-1\ge0\end{matrix}\right.\)

Ta có:

\(\sqrt{f\left(x\right)-1}+\sqrt{g\left(x\right)-1}+f\left(x\right).g\left(x\right)-f\left(x\right)-g\left(x\right)+1=0\)

\(\Leftrightarrow\sqrt{f\left(x\right)-1}+\sqrt{g\left(x\right)-1}+\left[f\left(x\right)-1\right]\left[g\left(x\right)-1\right]=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}f\left(x\right)=1\\g\left(x\right)=1\end{matrix}\right.\) \(\Leftrightarrow x=3\)

Vậy tập nghiệm của pt đã cho có đúng 1 phần tử

24 tháng 10 2018

Điều kiện của phương trình là x ≠ (-1)/3.

Để phá các dấu giá trị tuyệt đối, ta phải xét ba trường hợp x < -3, -3 ≤ x < 1/2 và x ≥ 1/2 dẫn đến giải phương trình rất tốn thời gian. Cách nhanh nhất là xét từng phương án. Phương án D bị loại di điều kiện của phương trình. Với phương án A, thay x = (-2)/3 vào phương trình ta thấy vế trái âm, còn vế phải dương, nên phương án này bị loại. Phương án C cũng bị loại do có giá trị x = (-2)/3.

Đáp án: B

25 tháng 11 2017

Chú ý. Đối với những hệ phương trình có hệ số thập phân như thế này ta nên nhân với 10 để có hệ phương trình hệ số nguyên:

Giải sách bài tập Toán 10 | Giải sbt Toán 10

Thay vào ta thấy phương án A sai, còn phương án B đúng. Vậy đáp án là B.

Đáp án: B

 

Câu 1: Tập xác định của hàm số y=3x2+2x+2 là A.∅      B.R       C.R\{2}            D.[3;+∞)Câu 2: Hệ phương trình sau có bao nhiêu nghiệm thực:\(\left\{{}\begin{matrix}x^2-y=y^2-x\\x^2-6y=7\end{matrix}\right.\)A.2     B.3         C.4         D.5Câu 3: Hệ phương trình \(\left\{{}\begin{matrix}\dfrac{2}{x}+\dfrac{3}{y}=13\\\dfrac{3}{x}+\dfrac{2}{y}=12\end{matrix}\right.\)có nghiệm là:A. x=\(\dfrac{1}{2}\);x=\(-\dfrac{1}{3}\)      B.x=\(\dfrac{1}{2}\);y=\(\dfrac{1}{3}\)     ...
Đọc tiếp

Câu 1: Tập xác định của hàm số y=3x2+2x+2 là 

A.∅      B.R       C.R\{2}            D.[3;+∞)

Câu 2: Hệ phương trình sau có bao nhiêu nghiệm thực:\(\left\{{}\begin{matrix}x^2-y=y^2-x\\x^2-6y=7\end{matrix}\right.\)

A.2     B.3         C.4         D.5

Câu 3: Hệ phương trình \(\left\{{}\begin{matrix}\dfrac{2}{x}+\dfrac{3}{y}=13\\\dfrac{3}{x}+\dfrac{2}{y}=12\end{matrix}\right.\)có nghiệm là:

A. x=\(\dfrac{1}{2}\);x=\(-\dfrac{1}{3}\)      B.x=\(\dfrac{1}{2}\);y=\(\dfrac{1}{3}\)      C.x=\(-\dfrac{1}{2}\);y=\(\dfrac{1}{3}\)

 D. Hệ vô nghiệm

Câu 4: Cho hệ:\(\left\{{}\begin{matrix}\dfrac{3}{x-1}+\dfrac{4}{y-2}=1\\\dfrac{1}{x-1}-\dfrac{2}{y-2}=2\end{matrix}\right.\) nếu đặt a=\(\dfrac{1}{x-1}\);b=\(\dfrac{1}{y-2}\)(x≠1;y≠2) hệ trở thành 

A.\(\left\{{}\begin{matrix}3a+4b=1\\a-2b=2\end{matrix}\right.\)       B.\(\left\{{}\begin{matrix}3a-4b=1\\a-2b=2\end{matrix}\right.\)      C.\(\left\{{}\begin{matrix}3a+4b=1\\a+2b=2\end{matrix}\right.\)        D.\(\left\{{}\begin{matrix}3a-4b=1\\a+2b=2\end{matrix}\right.\)

Câu 5: Hệ phương trình sau có bao nhiêu nghiệm (x;y): \(\left\{{}\begin{matrix}\dfrac{2}{x}+\dfrac{3}{y}=5\\\dfrac{4}{x}+\dfrac{6}{y}=6\end{matrix}\right.\)

A.0       B.1          C.2              D.Vô nghiệm

Câu 6: Tìm nghiệm (x;y) của hệ :\(\left\{{}\begin{matrix}x-y=1\\2x+y-z=2\\y+z=3\end{matrix}\right.\)

A.(\(\dfrac{7}{4};\dfrac{3}{4};\dfrac{9}{4}\))          B.(\(-\dfrac{7}{4};\dfrac{3}{4};-\dfrac{9}{4}\))      C.(\(\dfrac{7}{4};-\dfrac{3}{4};-\dfrac{9}{4}\))       D.(\(\dfrac{7}{4};-\dfrac{3}{4};-\dfrac{9}{4}\))   

Câu 7: Hệ phương trình:\(\left\{{}\begin{matrix}x+y=2\\x+2z=3\\y+z=2\end{matrix}\right.\) có nghiệm là?

A.(1;1;1)     B.(2;2;1)        C.(-1;1;2)      D.(1;2;1)

Câu 8: Cho tam giác ABC có a2+b2>c2 khi đó 

A.Góc C>90o      B. Góc C<90o      C. Góc C=90o    D. Không thể kết luận được gì về góc 

C

Câu 9 : Tập nghiệm bất phương trinh x2<0

A.R    B.∅       C.(-1;0)       D.(-1;+∞)

Câu 10: Tập nghiệm của bất phương trình (x+1)2≥0

A.R       B.∅      C.(-1;0)        D.(-1;+∞)

 

1
2 tháng 2 2021

Chọn D.

 

 

Chọn A.

 

 

Chọn D.

 

 

Chọn A.

 

 

Chọn A.

mình chỉ biết làm đến đây thôi @@

9 tháng 12 2019

Đáp án: D

 

2 - x = x  nên x > 0 kết hợp đkxđ x ≤ 2  khi đó phương trình có nghiệm thỏa mãn  0 < x ≤ 2   ⇒ a sai.

7 - 4 3 = 2 - 3 . ⇒ b sai

2 x - 1 x - 2 = x + 1 x - 2 ⇒ 2x – 1 = x + 1 ( x ≠ 2 ) ⇔ x = 2 (loại).

Vậy phương trình vô nghiệm. ⇒ c đúng.

  5 x 2 - 4 5 x + 3 < - 1 ⇔ 5 x 2 - 4 5 x + 4 < 0 ⇔ 5 x - 2 2 < 0 (vô lí) ⇒ d sai.

 có 1 mệnh đề đúng.

 

Trắc nghiệm (4 điểm) Câu 1: Bất phương trình 2x  3  2x  6  3x 1 xác định khi nào? x1 x1  x  1 A. x1  x   1 B. x1  x  1 C. x1  x   1 D. x1  3   3 Câu 2: Tập nghiệm của bất phương trình 2x 13x  2  0 là A. B.  3 D. 2;  3 A.;21; B. 2;1 C. 1;2 ...
Đọc tiếp

Trắc nghiệm (4 điểm)
Câu 1: Bất phương trình 2x  3  2x  6  3x 1 xác định khi nào?
x1 x1
 x  1 A. x1
 x   1 B. x1
 x  1 C. x1
 x   1 D. x1
 3 
 3
Câu 2: Tập nghiệm của bất phương trình 2x 13x  2  0 là
A. B.
 3 D. 2;
 3 A.;21; B. 2;1 C. 1;2
323223 3 Câu 3: Nhị thức f x   2x  5 có bảng xét dấu như thế nào?
C.
Câu 4: Tập nghiệm của bất phương trình x 1  1 là
D.
x3
A. B.3; C. ;5 D. 
Câu5:Bấtphươngtrình 2xm2 10 cótậpnghiệmtrongkhoảng ;4 khi và chỉ khi:
A. m3 B. 3m3 C. m3 Câu 6: Điều kiện để tam thức bâc hai f x  ax2  bx  c
A. a0 B. a0 C. a0   0   0   0
D. m 3
a  0 lớn hơn 0 với mọi x là:
D. a0   0
Câu7:Bấtphươngtrình 2x2 5x30 cótậpnghiệmlà
D. ;31;   
A. 1;3 B. ;31; C.;13; 2 2   2
2 
Câu 8: Tập nghiệm của bất phương trình A. (;2](1;1)[2;)
C. (;2][2;)
Câu 9: Tập nghiệm của bất phương trình
3  1 là x2 1
B. [2;1)(1;2) D. (-1; 1)
2xx2 1
3  2x  x2  0 là
1
Mã đề 101
A. (3;1][0;1)(1;) B. (3;1][0;) C.(-;-3)[-1;0](1;+ ) D.(-3;-1)(1;+ )
Câu 10: Tổng của các nghiệm nguyên của hệ bất phương trình x  5  0 là: x50
A. 0 B. 5 C. 15 D. Không xác định được II. Tự luận (6 điểm)
Câu 1: Giải các bất phương trình sau
a) (3x2 – 10x + 3)(4x – 5) > 0
b) 3x47  4x47 3x 1 2x 1
2x3 x1
d) x27x632x
Câu 2. Tìm giá trị của m để các bất phương trình sau vô nghiệm.
(m–3)x2 +(m+2)x–4>0

1
21 tháng 4 2020

?

Câu 1:Ta có:

a) \(\left|x-3\right|=5\Leftrightarrow\left[{}\begin{matrix}x-3=5\\x-3=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-2\end{matrix}\right.\)

b) \(\left|2x+3\right|=2.\left|4-x\right|\)

+)Xét \(\left\{{}\begin{matrix}2x+3\ge0\\4-x\ge0\end{matrix}\right.\) \(\Leftrightarrow\dfrac{-3}{2}\le x\le4\)

Khi đó \(2x+3=2\left(4-x\right)\Leftrightarrow2x+3=8-2x\Leftrightarrow4x=5\Leftrightarrow x=\dfrac{5}{4}\left(tm\right)\)

+) Xét \(\left\{{}\begin{matrix}2x+3\ge0\\4-x\le0\end{matrix}\right.\) \(\Leftrightarrow x\ge4\)

Khi đó: \(2x+3=2\left(x-4\right)=2x-8\Leftrightarrow0x=-11\left(vl\right)\)

+) Xét \(\left\{{}\begin{matrix}2x+3\le0\\4-x\ge0\end{matrix}\right.\) \(\Leftrightarrow x\le\dfrac{-3}{2}\)

Khi đó: \(-\left(2x+3\right)=2.\left(4-x\right)\Leftrightarrow-2x-3=8-2x\left(vl\right)\)

+)Xét \(\left\{{}\begin{matrix}2x+3\le0\\4-x\le0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{-3}{2}\\x\ge4\end{matrix}\right.\) \(\left(vl\right)\)

Vậy...

c) ĐKXĐ : \(3-x\ge0\Leftrightarrow x\le3\)

+)Xét \(x^{^2}-3x+1\ge0\)

\(\Leftrightarrow x^2-3x+1=3-x\Leftrightarrow x^2-2x-2=0\)

\(\Leftrightarrow x^2-2x+1=3\Leftrightarrow\left(x-1\right)^2=3\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=\sqrt{3}\\x-1=-\sqrt{3}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1+\sqrt{3}\left(tm\right)\\x=1-\sqrt{3}\left(tm\right)\end{matrix}\right.\)

+)Xét \(x^{^2}-3x+1\le0\)

\(\Leftrightarrow-\left(x^2-3x+1\right)=3-x\)

\(\Leftrightarrow x^2-3x+1=x-3\Leftrightarrow x^2-4x+4=0\)

\(\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\left(tm\right)\)

Vậy...

Câu 2:

 Ta có:

Phương trình \(\left(x+3\right)\left(x^2-2x+m-1\right)=0\) có một nghiệm là \(x=-3\)

\(\Rightarrow\)Phương trình \(\left(x+3\right)\left(x^2-2x+m-1\right)=0\) có ba nghiệm phân biệt khi và chỉ khi \(x^2-2x+m-1=0\) có 2 nghiệm phân biệt và khác \(-3\)

Ta có:  \(x^2-2x+m-1=0\) có 2 nghiệm phân biệt khi và chỉ khi \(\text{△}>0\Leftrightarrow8-4m>0\Leftrightarrow m< 2\)

 Gọi \(x_1\) và \(x_2\) là 2 nghiệm của phương trình \(x^2-2x+m-1=0\).Theo hệ thức Vi-ét ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{-2}{1}=2\\x_1x_2=\dfrac{m-1}{1}=m-1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x_1=2-x_2\\\left(2-x_2\right).x_2=m-1\end{matrix}\right.\)

Nếu \(x_2\ne-3\) thì \(m-1\ne-15\Leftrightarrow m\ne-14\).

Do vai trò của  \(x_1\) và \(x_2\) là như nhau nên  \(x^2-2x+m-1=0\) có 2 nghiệm phân biệt và khác \(-3\) khi và chỉ khi: \(\left\{{}\begin{matrix}m< 2\\m\ne-14\end{matrix}\right.\)