Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: Ta có: \(\left(6x+3\right)-\left(2x-5\right)\left(2x+1\right)\)
\(=\left(2x+1\right)\left(3-2x+5\right)\)
\(=\left(2x+1\right)\left(8-2x\right)\)
\(=2\left(4-x\right)\left(2x+1\right)\)
b) Ta có: \(\left(3x-2\right)\left(4x-3\right)-\left(2-3x\right)\left(x-1\right)-2\left(3x-2\right)\left(x+1\right)\)
\(=\left(3x-2\right)\left(4x-3\right)+\left(3x-2\right)\left(x-1\right)-\left(3x-2\right)\left(2x+2\right)\)
\(=\left(3x-2\right)\left(4x-3+x-1-2x-2\right)\)
\(=\left(3x-2\right)\left(3x-6\right)\)
\(=3\left(3x-2\right)\left(x-2\right)\)
Bài 2:
a: Ta có: \(\left(a-b\right)\left(a+2b\right)-\left(b-a\right)\left(2a-b\right)-\left(a-b\right)\left(a+3b\right)\)
\(=\left(a-b\right)\left(a+2b\right)+\left(a-b\right)\left(2a-b\right)-\left(a-b\right)\left(a+3b\right)\)
\(=\left(a-b\right)\left(a+2b+2a-b-a-3b\right)\)
\(=\left(a-b\right)\left(2a-4b\right)\)
\(=2\left(a-b\right)\left(a-2b\right)\)
f: Ta có: \(x^2-6xy+9y^2+4x-12y\)
\(=\left(x-3y\right)^2+4\left(x-3y\right)\)
\(=\left(x-3y\right)\left(x-3y+4\right)\)
Bài 1:
b: \(=\left(x-2y\right)\left(x+2y\right)+4\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x-2y+4\right)\)
c: \(=\left(x+y-3\right)\left(x+y+3\right)\)
Bài 1:
a: \(3xy^2-12x=3x\left(y^2-4\right)=3x\left(y-2\right)\left(y+2\right)\)
b: \(x^2-4y^2+4x+8y\)
\(=\left(x-2y\right)\left(x+2y\right)+4\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x-2y+4\right)\)
a) Ta có: \(x^4+64\)
\(=x^4+16x^2+64-16x^2\)
\(=\left(x^2+8\right)^2-\left(4x\right)^2\)
\(=\left(x^2-4x+8\right)\left(x^2+4x+8\right)\)
b) Ta có: \(81x^4+4y^4\)
\(=81x^4+36x^2y^2+4y^4-36x^2y^2\)
\(=\left(9x^2+2y^2\right)^2-\left(6xy\right)^2\)
\(=\left(9x^2-6xy+2y^2\right)\left(9x^2+6xy+2y^2\right)\)
c) Ta có: \(x^5+x+1\)
\(=x^5+x^2-x^2+x-1\)
\(=x^2\left(x^3+1\right)-\left(x^2-x+1\right)\)
\(=x^2\left(x+1\right)\left(x^2-x+1\right)-\left(x^2-x+1\right)\)
\(=\left(x^2-x+1\right)\left(x^3+x^2-1\right)\)
Đề bạn có mấy chỗ thiếu mk bổ sung nha
\(a,2^3+4^2+6x=8+16+6x=6x+24=x\left(x+4\right)\\ b,x^2-4=\left(x-2\right)\left(x+2\right)\\ c,x^2-10x+25=\left(x-5\right)^2\\ d,x^3-4x=x\left(x^2-4\right)=x\left(x-2\right)\left(x+2\right)\\ e,x^2+xy-3x-3y=x\left(x+y\right)-3\left(x+y\right)=\left(x-3\right)\left(x+y\right)\\ g,x^2-y^2-4x+4=\left(x-2\right)^2-y^2=\left(x-y-2\right)\left(x+y-2\right)\)
Tick plzz
a: Ta có: \(2x^3+4x^2+6x\)
\(=2x\left(x^2+2x+3\right)\)
b: \(x^2-4=\left(x-2\right)\left(x+2\right)\)
c: \(x^2-10x+25=\left(x-5\right)^2\)
d: \(x^3-4x=x\left(x-2\right)\left(x+2\right)\)
e: \(x^2+xy-3x-3y\)
\(=x\left(x+y\right)-3\left(x+y\right)\)
\(=\left(x+y\right)\left(x-3\right)\)
g: \(x^2-4x+4-y^2\)
\(=\left(x-2\right)^2-y^2\)
\(=\left(x-y-2\right)\left(x+y-2\right)\)
Bài 2:
a: \(3x^2-3xy=3x\left(x-y\right)\)
b: \(x^2-4y^2=\left(x-2y\right)\left(x+2y\right)\)
c: \(3x-3y+xy-y^2=\left(x-y\right)\left(3+y\right)\)
d: \(x^2-y^2+2y-1=\left(x-y+1\right)\left(x+y-1\right)\)
\(a,=2x\left(x+3\right)\\ b,=x^3\left(x+3\right)+\left(x+3\right)=\left(x^3+1\right)\left(x+3\right)\\ =\left(x+1\right)\left(x+3\right)\left(x^2-x+1\right)\\ c,=64-\left(x-y\right)^2=\left(8-x+y\right)\left(8+x-y\right)\\ A=x^2+6x+5+x^3-8-x^2-x+2\\ A=x^3+5x-1\)
a) 2x2+6x=2x(x+3)
b) x4+3x3+x+3=(x4+x)+(3x3+3)=x(x3+1)+3(x3+1)=(x+3)(x3+1)
c) 64-x2-y2+2xy=-(x2-2xy+y2)+82=8-(x+y)2=(8+x+y)(8-x-y)
A= (x+5)(x+1)+(x-2)(x2+2xx+4)-(x2+x-2)
A= x2+6x+5+x3-8-x2-x+2
A= x3+(x2-x2)+(6x-x)+(5-8+2)
A= x3+5x-1
\(x^4-3x^3-6x^2+3x+1\)
\(=x^4-2x^2+1-3x^3+3x-4x^2\)
\(=\left(x^2-1\right)^2-3x\left(x^2-1\right)-4x^2\)
đặt \(a=x^2-1\) khi đó biểu thức trở thành
\(a^2-3ax-4x^2\)
\(=a^2+ax-4ax-4x^2\)
\(=\left(a+x\right)\left(a-4x\right)\)
\(=\left(x^2+x-1\right)\left(x^2-4x+1\right)\)