Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham khảo:https://hoc247.net/hoi-dap/toan-8/phan-tich-da-thuc-x-7-x-2-1-thanh-nhan-tu-faq417522.html
\(=x^7+x^6-x^6+x^5-x^5+x^4-x^4+x^3-x^3+x^2+x^2-x^2+x-x+1\\ =\left(x^7+x^6+x^5\right)-\left(x^6+x^5+x^4\right)+\left(x^4+x^3+x^2\right)-\left(x^3+x^2+x\right)+\left(x^2+x+1\right)\\ =\left(x^2+x+1\right)\left(x^5-x^4+x^2-x+1\right)\)
a) \(a^2+b^2+2ab+2a+2b+1=\left(a^2+2ab+b^2\right)+\left(2a+2b\right)+1\)
\(=\left(a+b\right)^2+2\left(a+b\right)+1=\left[\left(a+b\right)+1\right]^2=\left(a+b+1\right)^2\)
b) K phân tích dc.
a) \(x^3-16x=x\left(x^2-4\right)=x\left(x-2\right)\left(x+2\right)\)
b) \(3x^2+3y^2-6xy-12=3\left(x^2-2xy+y^2-4\right)=3\left(x-y-2\right)\left(x-y+2\right)\)
c) \(x^2+6x+5=\left(x+1\right)\left(x+5\right)\)
d) \(x^4+x^3+2x^2+x+1=x^2\left(x^2+x+1\right)+\left(x^2+x+1\right)=\left(x^2+x+1\right)\left(x^2+1\right)\)
x^3-2x-4
=x^3-2x-8+4 (Ta thấy - 8 + 4 là bằng -4 nên ta thêm vào thì cũng giống nhau)
=(x^3-8)-(2x-4) (Nhóm hạng tử)
=(x-2)(x^2+2x+4)-2(x-2) \([\)(Hằng đẳng thức 6) và ta thấy -2 là nhân tử chung\(]\)
=(x-2)(x^2+2x+4-x+2) (Rút gọn)
=(x-2)(x^2+x+6)
\(ax-2x-a^2+2a\)
\(=\left(ax-2x\right)-\left(a^2-2a\right)\)
\(=x\left(a-2\right)-a\left(a-2\right)\)
\(=\left(a-2\right)\left(x-a\right)\)
Ta có \(x^4+4=\left(x^2\right)^2+2^2=\left(x^2+2\right)^2-2.x^2.2=\left(x^2+2\right)^2-\left(2x\right)^2\)
\(=\left(x^2+2x+2\right)\left(x^2-2x+2\right)\)
\(ax-2x-a^2+2a=x\left(a-2\right)-a\left(a-2\right)=\left(a-2\right)\left(x-a\right)\)
x(a−2)−a(a−2)x⋅(a−2)−a(a−2)
(x−a)(a−2)(x−a)(a−2)