K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 9 2019

d) x4 + 2x3 - 4x – 4 = (x4 – 4) + (2x3 – 4x) = (x2 – 2)(x2 + 2) + 2x(x2 – 2)

= (x2 – 2)(x2 + 2 + 2x) = (x - √2)( x + √2)( x2 + 2 + 2x)

24 tháng 9 2021

\(1,\\ 1,=15\left(x+y\right)\\ 2,=4\left(2x-3y\right)\\ 3,=x\left(y-1\right)\\ 4,=2x\left(2x-3\right)\\ 2,\\ 1,=\left(x+y\right)\left(2-5a\right)\\ 2,=\left(x-5\right)\left(a^2-3\right)\\ 3,=\left(a-b\right)\left(4x+6xy\right)=2x\left(2+3y\right)\left(a-b\right)\\ 4,=\left(x-1\right)\left(3x+5\right)\\ 3,\\ A=13\left(87+12+1\right)=13\cdot100=1300\\ B=\left(x-3\right)\left(2x+y\right)=\left(13-3\right)\left(26+4\right)=10\cdot30=300\\ 4,\\ 1,\Rightarrow\left(x-5\right)\left(x-2\right)=0\Rightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\\ 2,\Rightarrow\left(x-7\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=7\\x=-2\end{matrix}\right.\\ 3,\Rightarrow\left(3x-1\right)\left(x-4\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=4\end{matrix}\right.\\ 4,\Rightarrow\left(2x+3\right)\left(2x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)

13 tháng 8 2019

\(a,x^2+9x+20=x^2+4x+5x+20.\)

\(=x\left(x+4\right)+5\left(x+4\right)=\left(x+4\right)\left(x+5\right)\)

\(b,x^4-5x^2+4=x^4-x^2-4x^2+4\)

\(=x^2\left(x^2-1\right)-4\left(x^2-1\right)=\left(x^2-1\right)\left(x^2-4\right)\)

\(=\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)\)

\(c,x^4+4=x^4+4x^2+4-4x^2\)

\(=\left(x^2-2\right)-\left(2x\right)^2=\left(x^2-2x-2\right)\left(x^2+2x-2\right)\)

\(d,x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1\)

\(=x\left(x+3\right)\left(x+1\right)\left(x+2\right)+1\)

\(\left(x^2+3x\right)\left(x^2+3x+2\right)+1\)

\(=\left(x^2+3x\right)\left(x^2+3x\right)+2\left(x^2+3x\right)+1\)

\(=\left(x^2+3x\right)^2+2\left(x^2+3x\right)+1\)

\(=\left(x^2+3x+1\right)^2\)

29 tháng 5 2021

x4 + x3 + 2x2 + x + 1 

= (x4 + 2x2 + 1) + (x3 + x)

= (x2 + 1)2 + x (x2 + 1)

= (x2 + 1) ( x2 + 1 + x)

= (x2 + 1) (x + 1)2

30 tháng 5 2021

Trả lời:

x4 + x3 + 2x+ x + 1

= ( x+ 2x2 + 1 ) + ( x3 + x )

= ( x+ 1 )+ x ( x+ 1)

= ( x2 + 1 ) ( x+ 1 + x )

= ( x2 + 1) ( x + 1 )2

22 tháng 12 2019

a) Áp dụng HĐT 1 thu được ( 2 x   +   y ) 2 .

b) Áp dụng HĐT 3 với A = 2x + l; B = x - l thu được

[(2x +1) + (x -1)] [(2x +1) - (x -1)] rút gọn thành 3x(x + 2).

c) Ta có: 9 - 6x +  x 2  -  y 2 = ( 3   -   x ) 2  -  y 2  = (3 - x - y)(3 -x + y).

d) Ta có: -(x + 2) + 3( x 2  - 4) = -{x + 2) + 3(x + 2)(x - 2)

= (x + 2) [-1 + 3(x - 2)] = (x + 2)(3x - 7).

23 tháng 3 2020

a) x4 + 4 = (x4 + 4x2 + 4) - 4x2 = (x2 + 2)2 - 4x2 = (x2 + 2x  + 2)(x2 - 2x + 2)

b) (x + 2)(x + 3)(x + 4)(x + 5) - 24 = (x + 2)(x + 5)(x + 3)(x + 4) - 24

= (x2 + 7x + 10)(x2 + 7x + 12) - 24

Đặt x2 + 7x + 10 = y => y(y + 2) - 24 = y2 + 2y - 24

= y2 + 6y - 4y - 24 = (y - 4)(y + 6) = (x2 + 7x + 10 - 4)(x2 + 7x + 10 + 6)

= (x2 + 7x + 6)(x2 + 7x + 16) = (x2 + x + 6x + 6)(x2 + 7x + 16) = (x + 1)(x + 6)(x2 + 7x + 16)

23 tháng 3 2020

ko làm mà đòi có ăn :)

22 tháng 8 2021

x4 - 4x3 - 8x2 + 8x 

 = x(x3 - 4x2 - 8x + 8) 

= x[x3 + 8 - 4x(x + 2)] 

= x[(x + 2)(x2 - 2x + 4) - 4x(x + 2)] 

= x(x + 2)(x2 - 6x + 4)

= x(x + 2)(x2 - 6x + 9 - 5) 

 = \(x\left(x+2\right)\left[\left(x-3\right)^2-5\right]=x\left(x+2\right)\left(x-3+\sqrt{5}\right)\left(x-3-\sqrt{5}\right)\)

22 tháng 8 2021

\(x^4-4x^3-8x^2+8x\)

\(=x\left(x^3-4x^2-8x+8\right)\)

\(=x\left(x^3-6x^2+2x^2+4x-12x+8\right)\)

\(=x\left[\left(x^3-6x^2+4x\right)+\left(2x^2-12x+8\right)\right]\)

\(=x\left[x\left(x^2-6x+4\right)+2\left(x^2-6x+4\right)\right]\)

\(=x\left(x^2-6x+4\right)\left(x+2\right)\)

\(=x\left[\left(x-3\right)^2-\left(\sqrt{5}\right)^2\right]\left(x+2\right)\)

\(=x\left(x-3-\sqrt{5}\right)\left(x-3+\sqrt{5}\right)\left(x+2\right)\)

\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)

\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)

\(=\left(x^2+7x\right)^2+22\left(x^2+7x\right)+96\)

\(=\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)

\(=\left(x+1\right)\left(x+6\right)\left(x^2+7x+16\right)\)

9 tháng 10 2021

\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\\ =\left[\left(x+2\right)\left(x+5\right)\right]\left[\left(x+3\right)\left(x+4\right)\right]-24\\ =\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)

Đặt \(x^2+7x+11=y\)

\(\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\\ =\left(y+1\right)\left(y-1\right)-24\\ =y^2-1-24\\ =y^2-25\\ =\left(y-5\right)\left(y+5\right)\\ =\left(x^2+7x+11-5\right)\left(x^2+7x+11+5\right)\\ =\left(x^2+7x+6\right)\left(x^2+7x+16\right)\\ =\left(x+1\right)\left(x+6\right)\left(x^2+7x+16\right)\)

12 tháng 10 2021

\(1,\\ a,=4\left(x-2\right)^2+y\left(x-2\right)=\left(4x-8+y\right)\left(x-2\right)\\ b,=3a^2\left(x-y\right)+ab\left(x-y\right)=a\left(3a+b\right)\left(x-y\right)\\ 2,\\ a,=\left(x-y\right)\left[x\left(x-y\right)^2-y-y^2\right]\\ =\left(x-y\right)\left(x^3-2x^2y+xy^2-y-y^2\right)\\ b,=2ax^2\left(x+3\right)+6a\left(x+3\right)\\ =2a\left(x^2+3\right)\left(x+3\right)\\ 3,\\ a,=xy\left(x-y\right)-3\left(x-y\right)=\left(xy-3\right)\left(x-y\right)\\ b,Sửa:3ax^2+3bx^2+ax+bx+5a+5b\\ =3x^2\left(a+b\right)+x\left(a+b\right)+5\left(a+b\right)\\ =\left(3x^2+x+5\right)\left(a+b\right)\\ 4,\\ A=\left(b+3\right)\left(a-b\right)\\ A=\left(1997+3\right)\left(2003-1997\right)=2000\cdot6=12000\\ 5,\\ a,\Leftrightarrow\left(x-2017\right)\left(8x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\\ b,\Leftrightarrow\left(x-1\right)\left(x^2-16\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4\\x=-4\end{matrix}\right.\)

28 tháng 11 2021
Lol .ngudoots