K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2019

\(P=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{399}{400}\)

\(\Rightarrow P< \frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{400}{401}\)

\(\Rightarrow P^2< \frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}.\frac{5}{6}.\frac{6}{7}...\frac{399}{400}.\frac{400}{401}\)

\(\Rightarrow P^2< \frac{1}{401}< \frac{1}{400}=\frac{1}{20^2}\)

\(\Rightarrow P< \frac{1}{20}\)

9 tháng 5 2019

P=1/2.3/4.5/6.....399/400

=>P<2/3.4/5......400/401

=>P2<1/2.2/3.3/4......398/399.399/400.400/401

=1/401<1/400=(1/20)2

=>P<1/20

13 tháng 5 2019

\(P=\frac{1}{2}.\frac{3}{4}.\frac{4}{5}.\frac{5}{6}......\frac{399}{400}\)

\(P=\frac{1.3.4.5....399}{2.4.5.6.....400}\)

\(P=\frac{1.3}{2.400}\)

\(P=\frac{3}{800}\)

Vì \(\frac{3}{800}< \frac{40}{800}\)

\(\Rightarrow P< \frac{40}{800}\)

\(\Rightarrow P< \frac{1}{20}\left(đpcm\right)\)

13 tháng 5 2019

Ta co:

\(P=\frac{1}{2}.\frac{3.4.5...399}{4.5.6...400}\)

\(\Leftrightarrow P=\frac{1}{2}.\frac{3}{400}=\frac{3}{800}< \frac{3}{600}=\frac{1}{20}\)

\(\Rightarrow P< \frac{1}{20}\left(dpcm\right).\)

30 tháng 4 2019

\(\frac{1}{2}\cdot\frac{1}{3}+\frac{1}{3}\cdot\frac{1}{4}+\frac{1}{4}\cdot\frac{1}{5}+\frac{1}{5}\cdot\frac{1}{6}+\frac{1}{6}\cdot\frac{1}{7}+\frac{1}{7}\cdot\frac{1}{8}+\frac{1}{8}\cdot\frac{1}{9}\)

\(=\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+\frac{1}{8\cdot9}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}\)

\(=\frac{1}{2}-\frac{1}{9}=\frac{7}{18}\)

30 tháng 4 2019

\(\frac{1}{2}\cdot\frac{1}{3}+\frac{1}{3}\cdot\frac{1}{4}+...+\frac{1}{8}\cdot\frac{1}{9}\)

\(=\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{8\cdot9}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}\)

 \(=\frac{1}{2}-\frac{1}{9}\)

            * LÀM NỐT *

                              #Louis

9 tháng 8 2016

\(D=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}\)

\(D< \frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{100}{101}\)

\(D^2< \frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}.\frac{5}{6}.\frac{6}{7}...\frac{99}{100}.\frac{100}{101}\)

\(D^2< \frac{1}{101}< \frac{1}{100}=\left(\frac{1}{10}\right)^2\)

=> \(D< \frac{1}{10}\left(đpcm\right)\)

9 tháng 8 2016

\(D=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}\)

\(D< \frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{100}{101}\)

\(D^2< \frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}.\frac{5}{6}.\frac{6}{7}...\frac{99}{100}.\frac{100}{101}\)

\(D^2< \frac{1}{101}< \frac{1}{100}=\left(\frac{1}{10}\right)^2\)

\(= >D< \frac{1}{10}\)

\(\text{k tui}\)

22 tháng 1 2018

M=(1.3.5.7.....99)/(2.4.6.8.....100)

số số hạng của tử = (99-1)/2 +1 = 50 -> 1.3.5.7....99= (99+1)*50/2 =2500

số số hạng của mẫu =  (100-2)/2+1 =50 -> 2.4.6.8....100= (100+2)*50/2 =2550

-->  M= 2500/2550 =50/51

Làm tương tự với N ta có kq N=51/52 ->M/N= 2600/2601 -> M<N

22 tháng 1 2018

bấm phân số kiểu j z bạn

Bài 22, Cho \(A=\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot...\cdot\frac{99}{100}\) \(B=\frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}\cdot...\cdot\frac{100}{101}\) 1/ So sánh A và B, A2 và A.B 2/ Chứng minh A<\(\frac{1}{10}\) Bài 21, Cho \(A=\frac{1\cdot3\cdot5\cdot...\cdot4095}{2\cdot4\cdot6\cdot...\cdot4096}\) \(B=\frac{2\cdot4\cdot6\cdot...\cdot4096}{1\cdot3\cdot5\cdot...\cdot4097}\) 1/ So sánh A2 và A.B 2/ Chứng minh A<\(\frac{1}{64}\) Bài 21, Cho...
Đọc tiếp

Bài 22, Cho \(A=\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot...\cdot\frac{99}{100}\)

\(B=\frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}\cdot...\cdot\frac{100}{101}\)

1/ So sánh A và B, A2 và A.B

2/ Chứng minh A<\(\frac{1}{10}\)

Bài 21, Cho \(A=\frac{1\cdot3\cdot5\cdot...\cdot4095}{2\cdot4\cdot6\cdot...\cdot4096}\)

\(B=\frac{2\cdot4\cdot6\cdot...\cdot4096}{1\cdot3\cdot5\cdot...\cdot4097}\)

1/ So sánh A2 và A.B

2/ Chứng minh A<\(\frac{1}{64}\)

Bài 21, Cho \(A=\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot...\cdot\frac{2499}{2500}\)

Chứng minh A<\(\frac{1}{49}\)

Bài 22, Cho \(A=\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot...\cdot\frac{99}{100}\)

\(B=\frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}\cdot...\cdot\frac{100}{101}\)

\(C=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}\cdot...\cdot\frac{98}{99}\)

1/ So sánh A, B, C

2/Chứng minh \(A\cdot C< A^2< \frac{1}{10}\)

3/Chứng minh \(\frac{1}{15}< A< \frac{1}{10}\)

0

a) Ta có: \(\frac{16}{15}\cdot\frac{-5}{14}\cdot\frac{54}{24}\cdot\frac{56}{21}\)

\(=\frac{16}{15}\cdot\frac{-5}{14}\cdot\frac{9}{4}\cdot\frac{8}{3}\)

\(=4\cdot\frac{-1}{3}\cdot\frac{4}{7}\cdot3\)

\(=12\cdot\frac{-4}{21}=\frac{-48}{21}=\frac{-16}{7}\)

b) Ta có: \(5\cdot\frac{7}{5}=\frac{35}{5}=7\)

c) Ta có: \(\frac{1}{7}\cdot\frac{5}{9}+\frac{5}{9}\cdot\frac{1}{7}+\frac{5}{9}\cdot\frac{3}{7}\)

\(=\frac{5}{9}\left(\frac{1}{7}+\frac{1}{7}+\frac{3}{7}\right)\)

\(=\frac{5}{9}\cdot\frac{5}{7}=\frac{25}{63}\)

d) Ta có: \(4\cdot11\cdot\frac{3}{4}\cdot\frac{9}{121}\)

\(=\frac{4\cdot11\cdot3\cdot9}{4\cdot121}=\frac{27}{11}\)

e) Ta có: \(\frac{3}{4}\cdot\frac{16}{9}-\frac{7}{5}:\frac{-21}{20}\)

\(=\frac{4}{3}+\frac{4}{3}=\frac{8}{3}\)

g) Ta có: \(2\frac{1}{3}-\frac{1}{3}\cdot\left[\frac{-3}{2}+\left(\frac{2}{3}+0,4\cdot5\right)\right]\)

\(=\frac{7}{3}-\frac{1}{3}\cdot\left[\frac{-3}{2}+\frac{2}{3}+2\right]\)

\(=\frac{7}{3}-\frac{1}{3}\cdot\frac{7}{6}\)

\(=\frac{7}{3}-\frac{7}{18}=\frac{42}{18}-\frac{7}{18}=\frac{35}{18}\)

14 tháng 7 2020

thank you,very well