K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 5 2017

a/ \(P=\left(\frac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}\right)\left(\frac{1-x}{\sqrt{2}}\right)^2\)

=> \(P=\left(\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right)\left(\frac{1-x}{\sqrt{2}}\right)^2\)

\(P=\left(\frac{x+\sqrt{x}-2\sqrt{x}-2-x+\sqrt{x}-2\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right)\left(\frac{1-x}{\sqrt{2}}\right)^2\)

\(P=\frac{-2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}.\frac{\left(1-\sqrt{x}\right)^2\left(1+\sqrt{x}\right)^2}{2}\)

=> \(P=-\sqrt{x}\left(\sqrt{x}-1\right)\)

b/ Nếu 0<x<1 => \(\sqrt{x}-1< 0\); và \(\sqrt{x}>0\)

=> \(P=-\sqrt{x}\left(\sqrt{x}-1\right)>0\)

c/ \(P=-\sqrt{x}\left(\sqrt{x}-1\right)=-x+\sqrt{x}=-x+2.\frac{1}{2}\sqrt{x}-\frac{1}{4}+\frac{1}{4}\)

=> \(P=\frac{1}{4}-\left(\sqrt{x}-\frac{1}{2}\right)^2\le\frac{1}{4}\)

=> \(P_{max}=\frac{1}{4}\)

Đạt được khi x=1/4

14 tháng 7 2016

ĐKXĐ : \(0\le x\ne1\)

a) \(P=\left(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right).\frac{\left(1-x\right)^2}{2}\)

\(=\left[\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right].\frac{\left(1-x\right)^2}{2}\)

\(=\frac{x-\sqrt{x}-2-x-\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}.\frac{\left(\sqrt{x}-1\right)^2\left(\sqrt{x}+1\right)^2}{2}\)

\(=\frac{-2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}.\frac{\left(\sqrt{x}-1\right)^2\left(\sqrt{x}+1\right)^2}{2}\)

\(=-\sqrt{x}\left(\sqrt{x}-1\right)\)

b) \(P=\sqrt{x}\left(1-\sqrt{x}\right)\)

Để P > 0 thì \(\hept{\begin{cases}\sqrt{x}>0\\1-\sqrt{x}>0\end{cases}\Rightarrow}0< x< 1\)

c) \(P=-x+\sqrt{x}=-\left(x-2\sqrt{x}.\frac{1}{2}+\frac{1}{4}\right)+\frac{1}{4}=-\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)

Vậy max P = 1/4 khi x = 1/4

5 tháng 2 2022

Answer:

a. \(P=\left(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right)\left(\frac{1-x}{\sqrt{2}}\right)^2\)   ĐK: \(x\ge0;x\ne1\)

\(=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}.\frac{\left(1-x\right)^2}{2}\)

\(=\frac{-2\sqrt{x}}{\sqrt{x}+1}.\frac{x-1}{2}\)

\(=\frac{\sqrt{x}\left(1-x\right)}{\sqrt{x}+1}\)

\(=\frac{\sqrt{x}\left(1-\sqrt{x}\right)\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\)

\(=\sqrt{x}\left(1-\sqrt{x}\right)\)

b. Vì \(0< x< 1\Rightarrow\hept{\begin{cases}\sqrt{x}\ge0\\1-\sqrt{x}>0\end{cases}}\Rightarrow\sqrt{x}\left(1-\sqrt{x}\right)>0\)

Do vậy \(\sqrt{x}\left(1-\sqrt{x}\right)>0\)

c. \(P=\sqrt{x}\left(1-\sqrt{x}\right)\)

\(=-\left(\sqrt{x}\right)^2+\sqrt{x}\)

\(=-\left(x-2\sqrt{x}.\frac{1}{2}+\frac{1}{4}\right)+\frac{1}{4}\)

\(=-\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\forall x\)

Dấu "=" xảy ra khi \(\sqrt{x}-\frac{1}{2}=0\Rightarrow x=\frac{1}{4}\)

10 tháng 3 2018

ĐK: 0 =< 1 # 0

a) \(\text{P}=\left(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}1}\right).\frac{\left(1-x\right)^2}{2}\)

\(\text{P}=\left[\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right].\frac{\left(1-x\right)^2}{2}\)

\(\text{P}=\frac{x-\sqrt{x}-2-x-\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}.\frac{\left(\sqrt{x}-1\right)^2\left(\sqrt{x}-1\right)^3}{2}\)

\(\text{P}=\frac{-2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}.\frac{\left(\sqrt{x}-1\right)^2\left(\sqrt{x}+1\right)^2}{2}\)

\(\text{P}=-\sqrt{x}\left(1-\sqrt{x}\right)\)

b) \(\text{P}=\sqrt{x}\left(\sqrt{x}-1\right)\)

Để P > 0 thì \(\hept{\begin{cases}\sqrt{x}>0\\1-\sqrt{x}>0\end{cases}\Rightarrow0< x< 1}\)

c) \(\text{P}=-x+\sqrt{x}=-\left(x-2\sqrt{x}.\frac{1}{2}+\frac{1}{4}\right)+\frac{1}{4}=-\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)

\(\Rightarrow MAX_P=\frac{1}{4}\text{ khi }x=\frac{1}{4}\)

24 tháng 7 2018

Trả Lời : 

Google bạn nhé !!!!

Học tốt