K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2020

Ta có

\(\left(5x-3y+4z\right)\left(5x-3y-4z\right)=\left(5x-3y\right)^2-16z^2\)

\(=25x^2-30xy+9y^2-16z^2\left(!\right)\)

Thay \(x^2=y^2+z^2\) vào ! thì

\(25x^2-30xy+9y^2-16\left(x^2-y^2\right)\)

\(=\left(3x-5y\right)^2\)

5 tháng 7 2017

Ta có \(\left(5x-3y+4z\right)\left(5x-3y-4z\right)=\left(3x-5y\right)^2\)

\(\Leftrightarrow\left(5x-3y\right)^2-\left(4z\right)^2=\left(3x-5y\right)^2\)

\(\Leftrightarrow25x^2-30xy+9y^2-16z^2=9x^2-30xy+25y^2\)

\(\Leftrightarrow16x^2=16y^2+16z^2\Leftrightarrow x^2=y^2+z^2\)

5 tháng 7 2017

(5x - 3y + 4z) . (5x - 3y - 4z) = (3x - 5y)2

(5x - 3y)2 - 16z2 = (3x - 5y)2

25x2 - 2.5x.3y + 9y2 - 16z2 = 9x2 - 2.3x.5y + 25y2

16x2 + 9y2 - 16z2 - 25y2 = 0

16x2 - 16y2 - 16z2 = 0

x2 - y2 - z2 = 0

x2 = y2 + z2

19 tháng 10 2022

Đặt x/3=y/4=z/5=k

=>x=3k; y=4k; z=5k

\(\dfrac{4x-3y}{2016}=\dfrac{4\cdot3k-3\cdot4k}{2016}=0\)

\(\dfrac{5y-4z}{2017}=\dfrac{5\cdot4k-4\cdot5k}{2017}=0\)

\(\dfrac{3z-5x}{2018}=\dfrac{3\cdot5k-5\cdot3k}{2018}=0\)

=>\(\dfrac{4x-3y}{2016}=\dfrac{5y-4z}{2017}=\dfrac{3z-5x}{2018}\)

20 tháng 12 2019

1.

Có: \(\frac{4x-5y}{7}=\frac{5z-3x}{9}=\frac{3y-4z}{11}\\ \Leftrightarrow\frac{7}{7}.\left(\frac{4x-5y}{7}\right)=\frac{9}{9}.\left(\frac{5z-3x}{9}\right)=\frac{11}{11}.\left(\frac{3y-4z}{11}\right)\\ \Leftrightarrow\frac{28x-35y}{49}=\frac{45z-27x}{81}=\frac{33y-44z}{121}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{28x-35y}{49}=\frac{45z-27x}{81}=\frac{33y-44z}{121}=\frac{28x-35y+45z-27x+33y-44z}{49+81+121}\)

tính ra nó đc x+ 2y +z ko đc tròn cho lắm..... mệt r tự nghĩ tiếp đi

21 tháng 12 2019
https://i.imgur.com/JmxAxsh.jpg
5 tháng 10 2018

Mình làm một câu để bạn tham khảo, sau đó bạn áp dụng làm các bài còn lại nha ^^

Có gì không hiểu bạn ib nha ^^

1. \(2x=3y-2x\left(1\right)\)\(x+y=14\)

\(\left(1\right)\Leftrightarrow4x=3y\)

\(\Leftrightarrow\dfrac{x}{3}=\dfrac{y}{4}\)

Theo tính chất dãy tỉ số bằng nhau, có:

\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{x+y}{3+4}=\dfrac{14}{7}=2\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2.3=6\\y=2.4=8\end{matrix}\right.\)

Bạn tự kết luận ^^

5 tháng 10 2018

sao nhieu bt the ban

21 tháng 2 2022

mik mới lớp 5 =]]

nên ko biết =]]]]]

=]]]]]]]]

=)))))))))))))

bài này của bạn chx đủ đk hay sao ý,xem lại đề đi

NV
22 tháng 9 2019

\(x^2=y^2+4z^2\Rightarrow x^2-y^2=4z^2\)

\(A=\left(5x-3y+8x\right)\left(5x-3y-8z\right)+1\)

\(=\left(5x-3y\right)^2-64z^2+1\)

\(=\left(5x-3y\right)^2-16\left(x^2-y^2\right)+1\)

\(=25x^2+9y^2-30xy-16x^2+16y^2+1\)

\(=9x^2-30xy+25y^2+1\)

\(=\left(3x-5y\right)^2+1>0\) \(\forall x;y\)

22 tháng 9 2019

Giúp mk đi các bạn ơi

Mk nhớ ơn suốt đời

22 tháng 9 2019

Áp dụng hằng đẳng thức \(\left(a-b\right).\left(a+b\right)=a^2-b^2\) vào ta được:

\(\left(5x-3y+8z\right).\left(5x-3y-8z\right)=\left(5x-3y\right)^2-\left(8z\right)^2\)

\(=25x^2-30xy+9y^2-64z^2.\)

Ta dùng tính chất:

\(x^2=y^2+4z^2\Rightarrow x^2-y^2=4z^2.\)

\(\Leftrightarrow25x^2-30xy+9y^2-16.4z^2\)

\(=25x^2-30xy+9y^2-16.\left(x^2-y^2\right)\)

\(=25x^2+9y^2-30xy-16x^2+16y^2\)

\(=9x^2-30xy+25y^2\)

\(=\left(3x-5y\right)^2.\)

Ta có: \(\left(3x-5y\right)^2+1\ge0\) \(\forall x,y.\)

\(\Rightarrow\left(3x-5y\right)^2\) luôn dương.

\(\Rightarrow\left(5x-3y+8z\right).\left(5x-3y-8z\right)+1\) luông dương \(\forall x,y\left(đpcm\right).\)

Chúc bạn học tốt!