Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a) có 2 trường hợp nha bn
TH1
n là số lẻ thì (n+10) là số lẻ và (n+17) là số chẵn => (n+10)(n+17) là số chẵn hay nói cách khác (n+10)(n+17) chia hết cho 2
TH2
n là số chẵn thì (n+10) là số chẵn và (n+17) là số lẻ => (n+10)(n+17) là số chẵn hay nói cách khác (n+10)(n+17) là chia hết cho 2
Vậy (n+10)(n+17) chia hết cho 2
Câu b)
Ta có \(a^3+b^3+c^3-a+b+c=a\left(a-1\right)\left(a+1\right)+b\left(b-1\right)\left(b+1\right)+c\left(c-1\right)\left(c+1\right)\)
Mà \(a\left(a-1\right)\left(a+1\right)\)và \(b\left(b-1\right)\left(b+1\right)\)và \(c\left(c-1\right)\left(c+1\right)\) là 3 số liên tiếp
Nên \(a\left(a-1\right)\left(a+1\right)\)và \(b\left(b-1\right)\left(b+1\right)\)và \(c\left(c-1\right)\left(c+1\right)\)chia hết cho 2 và 3 => chia hết cho 6
Ta có \(a^3+b^3+c^3-a+b+c\)chia hết cho 6 mà \(a^3+b^3+c^3\)chia hết cho 6
Vậy \(a+b+c\)chia hết cho 6
a, nếu tổng của 2 số chia hết cho 9 và một trong hai số chia hết cho 3 thì số còn lại chua hết cho 3.Đ
b, nếu hiệu của 2 số chia hết cho 6 và số thứ nhất chia hết cho 6 thì số thứ hai chia hết cho 3.Đ
c, nếu a chia hết cho 18, b chia hết cho 9, c không chia hết cho 6 thì a+b+c không chia hết cho 3.S
a) n+2 chia het n-1 b) 2n+7 chia het n+1
(n-1)+3 chia hết n-1 2(n+1)+5 chia hết n+1
Suy ra Suy ra
3 chia hết n-1 5 chia het n+1
n-1 thuộc Ư(3) n+1 thuộc Ư(5)
n-1 = 3 ; 1 n+1= 5 ; 1
n= 4 ; 2 n = 4 ; 0
1)Vì tổng của 2 số đó không chia hết cho 2
=>Tổng của chúng là số lẻ
=>Không thể cả 2 số đều cùng chẵn hoặc cùng lẻ
=>Có 1 số chẵn và 1 số lẻ
=>Tích của chúng là số chẵn(vì số nào nhân với số chẵn đều được tích là số chẵn)
=>Tích của chúng chia hết cho2
2)Ta có: a+a2=a.(a+1)
Vì a là số tự nhiên
=>a có 2 dạng là 2k hoặc 2k+1
Xét a=2k=>a.(a+1)=2k.(a+1) chia hết cho 2
=>a+a2 chia hết cho 2(1)
Xét a=2k+1=>a.(a+1)=a.(2k+1+1)=a.(2k+2)=a.(k+1).2 chia hết cho 2
=>a+a2 chia hết cho 2(2)
Từ (1) và (2) ta thấy: a+a2 chia hết cho 2
=>ĐPCM
a) a=9 ; b=3 ; m=9 ; n=3. a chia hết cho m thì bằng: 9:9=1 ; b chia hết cho những thì bằng: 3:3=1.
a.b chia hết cho m.n thì bằng : 9.9 chia hết cho 3.3 = 9.9=81 chia hết cho 3.3=9.
Vậy là xong câu a. Bạn có thể tìm số khác nhưng phải làm sao cho số a chia hết cho số b. Còn m=a ; những=b
b) a chia hết cho b = 9 chia hết cho 3; a mũ m chia hết cho b mũ m = 9^9 chia hết cho 3^3. Vì 9 chia hết cho 3 mà.
Mà a=9 ; b=3 ; m=9. Các số này đều thuộc tập hợp N luôn.
Mình giải xong rồi đó. tick cho mình đi. Thank
a) Tìm x biết, (2x+10) chia hết cho x-2
- 2x+10
- = 2x-4+14 (Vì -4 đơn vị phải +14 đơn vị để bằng 10 như ban đầu)
- = (2x-4)+14 (Nhóm hạng tử)
- = 2(x-2)+14 (Nhân tử chung)
Vì (x-2) chia hết cho (x-2) => 2(x-2) cũng chia hết cho (x-2) (Một số bất kì a chia hết cho b thì tích của a cũng chia hết cho b)
Vậy để 2(x-2)+14 chia hết cho (x-2)
Thì 14 cũng phải chia hết cho (x-2) (Tổng 2 số chia hết cho số thứ 3 thì từng số hạng cũng chia hết cho số đó)
=>(x-2) là Ư(14)={1;2;7;14}
- x-2=1 => x=3
- x-2=2 => x=4
- x-2=7 => x=9
- x-2=14 => x=16
Vậy x={3;4;9;16}
b) Tìm x biết, 3x chia hết cho (x-1)
- 3x=x+x+x
- =x-1+x-1+x-1+3 (Vì trừ 3 đơn vị thì phải cộng 3 đơn vị)
- =(x-1)+(x-1)+(x-1)+3 (Nhóm hạng tử)
Vì (x+1) chia hết cho (x-1)
Vậy để (x-1)+(x-1)+(x-1)+3 chia hết cho (x-1)
Thì 3 cũng phải chia hết cho (x-1)
=> (x-1)= Ư(3)={1;3}
- x-1=1 => x=2
- x-1=3 => x=4
Vậy x={2;4}
Ta có\(5a+3b\)chia hết cho 7 nên \(3\left(5a+3b\right)=15a+9b\)chia hết cho 7
Lại có \(15a+9b-5\left(3a-b\right)=15a+9b-15a+5b=14b\)
Vì \(14b\)chia hết cho 7 mà \(15a+9b=3\left(5a+3b\right)\)chia hết cho 7
Nên \(5\left(3a-b\right)\)chia hết cho 7
Vì 5 không chia hết cho 7 nên \(3a-b\)chia hết cho 7
Chúc bạn học tốt!
Nếu a \(⋮6\), b \(⋮9\)thì a + b chia hết cho 3
Vì a chia hết cho 6 => a chia hết cho 3 và 2
Vì b chia hết cho 9 => b chia hết cho 3
=> a + b chia hết cho 3