K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 9 2018

Áp dụng tính chất: Nếu a > b  và c là số bất kì thì a + c > b + c.

Có thể lấy ví dụ để thấy các bất đẳng thức còn lại không đúng.  ( bỏ đi)

Đáp án là C.

25 tháng 2 2019

Do a< b mà 2 > 0 nên 2a < 2b  (*)

Cộng cả 2 vế của (*)  với 5c ta được: 2a +  5c <  2b +  5c

10 tháng 6 2017

Áp dụng tính chất: Nếu a > b  và c > d  thì a + c > b + d .

Có thể lấy ví dụ để thấy các bất đẳng thức còn lại không đúng.   ( bỏ đi)

Đáp án là D.

29 tháng 5 2017

Áp dụng tính chất: Nếu a > b  và c > d  thì a + c > b + d , từ đó suy ra a - d > b - c .

Có thể lấy ví dụ để thấy các bất đẳng thức còn lại không đúng.   ( bỏ đi)

Đáp án là C.

1 tháng 10 2017

Nếu a > b và a > c thì:

      a +  a > b + c hay 2a >  b + c

1 tháng 4 2019

Do a + 4 c >  b +  4c nên : a + 4c + (- 4c) > b + 4c + (-4c) hay a>  b.

Nhân cả 2 vế với 6> 0 ta được: 6a > 6b.

Chọn C.

AH
Akai Haruma
Giáo viên
19 tháng 12 2021

Lời giải:
$a+2c> b+c$

$\Rightarrow a> b-c$

Không có cơ sở nào để xác định xem biểu BĐT nào đúng.

19 tháng 3 2017

* Từ a- b > a suy ra: a – b + ( -a) > a + (-a) hay – b >0

⇔ b < 0  ( nhân cả 2 vế với -1).

* Từ a + b < b suy ra: a + b + (- b) <  b + (-b)

Hay a < 0

Vậy a < 0 và  b < 0 .

19 tháng 7 2019

Nếu a> b >0  và c> d > 0 thì

* a+ c > b + d

* Từ a > b > 0  và c > 0 nên ac >  bc   (1)

Lại có c > d và b > 0 nên bc >  bd   (2)

Từ(1) và (2) suy ra: ac >  bd.

* Ta có:

a b > b b = 1 ;   d c < c c = 1 ⇒ a b > 1 > d c

Vậy khẳng định C sai.