Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số trận đấu mà anh Nam chơi ngày thứ nhất, thứ 2, ..., ngày thứ 20 lần lược là: a1; a2; ...; a n.
Xét 20 tổng :
S1 = a1
S2 = a1 + a2
...................
S n = a1 + a2 + ... + a n
Ta có: S1 < S2 < .... < S n < 36 (vì trong 20 ngày anh Nam không chơi quá 12.3 = 36 trận)
Ta biết rằng 1 số tự nhiên bất kỳ khi chia cho 20 thì có 19 số dư khác 0 là: 1, 2,...,19.
Giờ quay lại bài toán ta thấy
Nếu trong 20 tổng này có 1 tổng chia hết 20 thì bài toán đã được chứng minh (vì các tổng đó lớn hơn 0 nhỏ hơn 36 nên tổng chỉ có thể là 20).
Còn nếu trong 20 tổng này không có tổng nào chia hết cho 20 thì sẽ tồn tại ít nhất 2 tổng có cùng số dư khi chia cho 20.
Giả sử hai tổng đó là S m, S n (m > n) thì ta có S m - S n = (a1 + a2 + ... + a m) - (a1 + a2 + ... + a n) = a n+1 + a n+2 + ...+ a m chia hết cho 20. Hay S m - S n = 20.
Vậy tồn tại một số ngày liên tiếp trong đó anh chơi đúng 20 trận.
tham khảo:
https://olm.vn/hoi-dap/detail/1070944541422.html
Xét các số 2, 22, 222,....., 222.....222 (có p + 1 chữ số 2)
=> có p + 1 số, các số dư có thể khi chia cho p là 0 , 1, ..., p - 1 (p số dư)
=> theo ngly dirichlet thì có chắc chắn ít nhất 2 số có cùng số dư
lấy 2 số đó trừ đi nhau thì được một số chỉ gồm chữ số 2 và 0 chia hết cho p
Ta có thể giải thích sự thành công của người bạn nhỏ như sau:
Ký hiệu hai người bạn chơi cờ giỏi là A và B. Trên bàn cờ với A người bạn nhỏ đi quân trắng thì bên bàn cờ với B cậu ta đi quân đen.
Khi A đi thế nào thì cậu ta đi đúng như thế trên bàn cờ với B, và đợi cho B đi, cậu ta lại đi đúng như B trên bàn cờ với A. Cuộc chơi cờ được lặp lại như vậy cho tới khi kết thúc.
Thực ra mọi diễn biến trên hai bàn cờ giống hệt nhau. Người bạn nhỏ chỉ làm khâu trung gian để A và B chơi với nhau.
Nếu A thắng thì cậu ta thắng B và ngược lại. Nếu hoà với một người thì cũng hoà với người kia.