Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=> \(\frac{\text{2(x+y)}}{30}\)=\(\frac{\text{5(y+z)}}{30}\)=\(\frac{\text{3(z+x)}}{30}\)
=> \(\frac{\text{x+y}}{15}\)=\(\frac{\text{y+z}}{6}\)=\(\frac{\text{z+x}}{10}\)
Theo t/c dãy tỉ số bằng nhau có:
\(\frac{\text{x+y}}{15}\)=\(\frac{\text{y+z}}{6}\)=\(\frac{\text{z+x}}{10}\)=\(\frac{\left(z+x\right)-\left(y+z\right)}{10-6}\)=\(\frac{x-y}{4}\)*
\(\frac{\text{x+y}}{15}\)=\(\frac{\text{y+z}}{6}\)=\(\frac{\text{z+x}}{10}\)=\(\frac{\left(x+y\right)-\left(z+x\right)}{15-10}\)=\(\frac{y-z}{5}\)**
Từ * và ** => \(\frac{x-y}{4}\)=\(\frac{y-z}{5}\)(đpcm)
K cần t i c k
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x-y}{2-3}=\frac{y-z}{3-4}=\frac{x-z}{2-4}\) (T/c dãy tỷ số bằng nhau)
\(\Rightarrow\frac{x-z}{-2}=-\left(x-y\right)\left(1\right)\Rightarrow\frac{\left(x-z\right)^3}{-8}=-\left(x-y\right)^3=-\left(x-y\right)^2\left(x-y\right)\left(2\right)\)
\(\Rightarrow\frac{x-z}{-2}=-\left(y-z\right)\left(3\right)\)
Từ (1) và (3) \(\Rightarrow\left(x-y\right)=\left(y-z\right)\) Thay vào (2)
\(\Rightarrow\frac{\left(x-z\right)^3}{-8}=-\left(x-y\right)^2\left(y-z\right)\Rightarrow\left(x-z\right)^3=8\left(x-y\right)^2\left(y-z\right)\left(dpcm\right)\)
\(2\left(x+y\right)=5\left(y+z\right)=3\left(z+x\right)\Leftrightarrow\frac{x+y}{15}=\frac{y+z}{6}=\frac{z+x}{10}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{y+z}{6}=\frac{z+x}{10}=\frac{\left(z+x\right)-\left(y+z\right)}{10-6}=\frac{x-y}{4}\)
\(\frac{x+y}{15}=\frac{z+x}{10}=\frac{\left(x+y\right)-\left(z+x\right)}{15-10}=\frac{y-z}{5}\)
Suy ra đpcm.
Ta có: \(\dfrac{y-z}{\left(x-y\right)\left(x-z\right)}=\dfrac{y-x+x-z}{\left(x-y\right)\left(x-z\right)}\)\(=\dfrac{y-x}{\left(x-y\right)\left(x-z\right)}+\dfrac{x-z}{\left(x-y\right)\left(x-z\right)}\) \(=\dfrac{1}{z-x}+\dfrac{1}{x-y}\)
Tương tự:
\(\dfrac{z-x}{\left(y-z\right)\left(y-x\right)}=\dfrac{1}{x-y}+\dfrac{1}{y-z}\)
\(\dfrac{x-y}{\left(z-x\right)\left(z-y\right)}=\dfrac{1}{y-z}+\dfrac{1}{z-x}\)
\(\Rightarrow\dfrac{y-z}{\left(x-y\right)\left(x-z\right)}+\dfrac{z-x}{\left(y-z\right)\left(y-x\right)}+\dfrac{x-y}{\left(z-x\right)\left(z-y\right)}\) \(=\dfrac{2}{x-y}+\dfrac{2}{y-z}+\dfrac{2}{z-x}\) \(\left(đpcm\right)\)