Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mot so chia cho 7 du 3 , chia cho 17 du 12 , chia cho 23 du 7 . hoi so do chia cho 2737 du bao nhieu
Gọi số đã cho là A, theo đề bài ta có :
A = 7.a + 3 = 17.b + 12 = 23.c + 7
Mặ khác : A + 39 = 7.a + 3 + 39 = 17.b + 12 + 39 = 23.c + 7 + 39 = 7.(a + 6) = 17.(b + 3) = 23.(c + 2)
Như vậy A + 39 đồng thời chia hết cho 7, 17 và 23
nhưng 7, 17 và 23 đồng thời là 3 số nguyên tố cùng nhau nên : (A + 39) \(⋮\)7.17.23 hay (A + 39) \(⋮\)2737
=> A + 39 = 2737.k
=> A = 2737.k - 39 = 2737.(k - 1) + 2698
Do 2698 < 2737 nên 2698 là số dư của phép chia : A : 2737
Gọi số đó là X và a, b, c lần lượt là thương của các phép chia của X cho 7, 17 và 23. Ta có:
X=7a+3 = 17b+12 = 23c+7
=> X+39 = 7a+3+39 = 17b+12+39 = 23c+7+39
=> X+39 = 7a+42 = 17b+51 = 23c+46
=> X+39 = 7(a+6) = 17(b+3) = 23(c+2)
Như vậy, X+39 chia hết cho cả 7, 17 và 23
Do 7, 17 và 23 là 3 số nguyên tố cùng nhau => X\(⋮\)7.17.23 =2737 => X\(⋮\)2737
=> X+39 = 2737.k (k thuộc N*) => X = 2737.k-39 = 2737.k-2737+2698
=> X=2737(k-1)+2698
Mà 2737(k-1)\(⋮\)2737 => X=2737(k-1)+2698 chia cho 2737 dư 2698
Đáp số: dư 2698
A chia 7 dư 3 thì: A = 7x + 3
A chia 17 dư 12 thì: A = 17y + 12
A chia 23 dư 7 thì: A = 23z + 7
Vậy A + 39 thì = 7x + 3 + 39 = 7x + 42 = 7*(x+6) chia hết cho 7
A + 39 = 17y + 12 + 39 = 17y + 51 = 17*(y + 3) chia hết cho 17
A + 39 = 23z + 7 +39 = 23z + 46 = 23*(z+2) chia hết cho 23
Vậy A + 39 chia hết co 7*17*23 = 2737
Hay A + 39 = 2737*k => A = 2737*(k-1) + 2737 - 39 = 2737*(k-1) + 2698
Vậy A chia 2737 dư 2698.
Gọi số cần tìm là a
Ta có: a:7 dư 3 => a+4 chia hết cho 7 => a+4+39 chia hết cho 7 => a+39 chia hết cho 7 (1)
a:17 dư 12 => a+5 chia hết cho 17 => a+5+34 chia hết cho 17 => a+39 chia hết cho 17 (2)
a:23 dư 7 => a+16 chia hết cho 23 => a+16+23 chia hết cho 23 => a +39 chia hết cho 23 (3)
Từ (1), (2), và (3) => a+39 chia hết cho 7, 17 và 23
Mà UCLN(7; 17; 23)= 1
=> a+39 chia hết cho 7x17x23
=> a:2737 dư 2689
Vậy số đó chia cho 2737 dư 2689
Giả sử số đó là a
a chia 7 dư 3, chia cho 17 dư 12, chia cho 23 dư 7.
Số dư của a khi chia cho 2737 là:
theo đầu bài, ta có:
A=7.a+4
=17.b+3
=23.c+11 (a,b,c ∈∈ N)
nếu ta thêm 150 vào số đã cho thì ta lần lượt có:
A+150=7.a+4+150=7.a+7.22=7.(a+22)
=17.b+3+150=17.b+17.9=17.(b+9)
=23.c+11+150=23.c+23.7=23.(c+7)
như vậy A+150 đồng thời chia hết cho 7,17 và 23. nhưng 7, 17 và 23 là ba sô đôi một nguyên tố cùng nhau, suy ra A+150 chia hết cho 7.17.13=2737
vậy A+150=2737k (k=1;2;3;4...)
suy ra: A=2737k-150=2737k-2737+2587=2737(k-1)+2587=2737k'+2587
do 2587<2737 nên 2587 là số dư trong phép chia số đã cho A cho 2737