Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi sự kiện A là vị trí này có nước ngầm, sự kiện B là máy báo đúng.
Ta có:
P(A) = 7/10 (vì cứ 10 địa điểm bị nghi vấn thì có 7 vị trí là có nước ngầm)
P(B|A) = 0.85 (vị trí có nước ngầm máy báo đúng với xác suất 0.85)
P(~B|~A) = 0.9 (vị trí không có nước ngầm máy báo sai với xác suất 0.1)
`(a)` Ta cần tính xác suất P(A|B), tức là vị trí này có nước ngầm khi máy báo đúng.
Theo công thức Bayes, ta có:
P(A|B) = P(B|A) * P(A) / P(B)
Trong đó:
P(B) = P(B|A) * P(A) + P(B|~A) * P(~A) (theo định lý xác suất toàn phần)
P(~A) = 1 - P(A) (vì chỉ có hai khả năng: có nước ngầm hoặc không có nước ngầm)
Thay giá trị vào ta được:
P(B) = P(B|A) * P(A) + P(B|~A) * P(~A) = 0.85 * 7/10 + 0.9 * 3/10 = 0.865
P(A|B) = P(B|A) * P(A) / P(B) = 0.85 * 7/10 / 0.865 ≈ 0.692
Vậy xác suất vị trí này có nước ngầm khi máy báo đúng là khoảng 69.2%.
`(b)` Ta cần tính xác suất P(B), tức là máy báo đúng.
Theo công thức Bayes, ta có:
P(B) = P(B|A) * P(A) + P(B|~A) * P(~A)
Thay giá trị vào ta được:
P(B) = P(B|A) * P(A) + P(B|~A) * P(~A) = 0.85 * 7/10 + 0.1 * 3/10 = 0.655
Vậy xác suất máy báo đúng là khoảng 65.5%.
Chọn C.
Gọi là số máy in sử dụng trong một giờ để được lãi nhiều nhất. Khi đó chi phí dành cho x máy in trong một giờ là nghìn đồng.
Chi phí vận hành 50x nghìn đồng.
Số bản in trong một giờ là 3600x => thời gian để in xong 50000 tờ quảng cáo là
Vậy tổng chi phí là nghìn đồng
Để lãi là nhiều nhất thì tổng chi phí là thấp nhất, vậy ta tìm giá trị nhỏ nhất của tổng chi phí.
Thay các giá trị x = {1;2;3;4;5;6;7;8} ta thấy giá trị nhỏ nhất là
Lời giải:
Xác suất để trong 1 giờ làm việc không có máy nào hỏng:
$P_1=(1-0,002)^{25}$
Xác suất để trong 1 giờ làm việc chỉ có 1 máy hỏng:
$P_2=0,002(1-0,002)^{24}$
Xác suất để trong 1 giờ làm việc chỉ có 2 máy hỏng:
$P_3=0,002^2(1-0,002)^{23}$
Xác suất để trong 1 giờ làm việc không quá 2 máy hỏng:
$P=P_1+P_2+P_3$