Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có:
thới gian ô tô đó đi 1/5 quãng đường đầu là:
\(t_1=\frac{S_1}{v_1}=\frac{S}{5v_1}=\frac{S}{225}\)
thời gian ô tô đi 2/5 quãng đường tiếp theo là:
\(t_2=\frac{S_2}{v_2}=\frac{2S}{5v_2}=\frac{2S}{75}\)
thời gian ô tô đi hết quãng đường còn lại là:
\(t_3=\frac{S_3}{v_3}=\frac{2S}{5v_3}=\frac{2S}{150}=\frac{S}{75}\)
vận tốc trung bình của ô tô là:
\(v_{tb}=\frac{S}{t_1+t_2+t_3}=\frac{S}{\frac{S}{225}+\frac{2S}{75}+\frac{S}{75}}\)
\(\Leftrightarrow v_{tb}=\frac{S}{S\left(\frac{1}{225}+\frac{2}{75}+\frac{1}{75}\right)}\)
\(\Leftrightarrow v_{tb}=\frac{1}{\frac{1}{225}+\frac{2}{75}+\frac{1}{75}}=22,5\) km/h
vậy vận tốc trung bình của ô tô là 22,5km/h
Gọi nửa QĐ là S
vtb = 2s/(s/v1+s/v2) = 2/(1/12+1/20) = 15km/h
Gọi S(km) là độ dài quãng đường (S>0)
\(\left\{{}\begin{matrix}t_1=\dfrac{\dfrac{S}{2}}{v_1}=\dfrac{S}{2.4}=\dfrac{S}{8}\left(h\right)\\t_2=\dfrac{\dfrac{S}{2}}{v_2}=\dfrac{S}{2.6}=\dfrac{S}{12}\left(h\right)\end{matrix}\right.\)
\(v_{tb}=\dfrac{S_1+S_2}{t_1+t_2}=\dfrac{S}{\dfrac{S}{8}+\dfrac{S}{12}}=\dfrac{S}{\dfrac{5}{24}S}=\dfrac{24}{5}=4,8\left(km/h\right)\)
Thời gian oto đi trong 1/3 quãng đường đầu là: \(t_1=\dfrac{\dfrac{1}{3}AB}{v_1}=\dfrac{AB}{3.60}=\dfrac{AB}{180}s\)
Thời gian oto đi trong 1/3 quãng đường tiếp theo là: \(t_2=\dfrac{AB}{3v_2}=\dfrac{AB}{3.20}=\dfrac{AB}{60}s\)
Thời gian oto đi trong 1/3 quãng đường cuối là: \(t_3=\dfrac{AB}{3v_3}=\dfrac{AB}{3.30}=\dfrac{AB}{90}s\)
Vận tốc trung bình của oto trên cả quãng đường là:
\(v_{tb}=\dfrac{AB}{t_1+t_2+t_3}=\dfrac{AB}{\dfrac{AB}{180}+\dfrac{AB}{60}+\dfrac{AB}{90}}=30\) (km/h)
Ta có: \(v_{tb}=\dfrac{S_1+S_2+S_3}{t_1+t_2+t_3}=\dfrac{S}{\dfrac{S}{36}+\dfrac{S}{42}+\dfrac{S}{30}}=\dfrac{1260}{107}\left(km/h\right)\)
\(v_{tb}=\dfrac{\dfrac{1}{3}+\dfrac{1}{3}+\dfrac{1}{3}}{\dfrac{\dfrac{1}{3}}{12}+\dfrac{\dfrac{1}{3}}{14}+\dfrac{\dfrac{1}{3}}{10}}=\dfrac{1260}{107}\approx11,776\left(\dfrac{km}{h}\right)\)
Tóm tắt:
\(s_1=s_2=s_3=\dfrac{1}{3}s_{AB}\)
\(v_1=13km/h\\ v_2=15km/h\\ v_3=17km/h\)
\(-----\\ v_{TB}=?\)
-- giải ---
Gọi độ dài mỗi đoạn đường là s
Ta có
\(v_{TB}=\dfrac{s+s+s}{t_1+t_2+t_3}=\dfrac{s+s+s}{\dfrac{s}{v_1}+\dfrac{s}{v_2}+\dfrac{s}{v_3}}\\ =\dfrac{3s}{s\left(\dfrac{1}{v_1}+\dfrac{1}{v_2}+\dfrac{1}{v_3}\right)}=\dfrac{3}{\dfrac{1}{v_1}+\dfrac{1}{v_2}+\dfrac{1}{v_3}}\)
Mình gợi ý cách làm. Đến đây thì bạn có thể thế số và bấm máy tính là tìm đc vTB rồi nhé!
Gọi s là chiều dài nửa quãng đường mà người đi xe đạp phải đi.
Như vậy, thời gian đi hết nửa quãng đường đầu s1 = s với vận tốc v1 là:
Thời gian đi hết nửa quãng đường còn lại s2 = s với vận tốc v2 là:
Vậy tổng thời gian đi hết cả quãng đường là:
Vận tốc trung bình của người đi xe đạp trên cả quãng đường là:
\(=>t1=\dfrac{\dfrac{1}{3}S}{12}=\dfrac{S}{36}\left(h\right)\)
\(=>t2=\dfrac{\dfrac{1}{3}S}{8}=\dfrac{S}{24}\left(h\right)\)
\(=>t3=\dfrac{\dfrac{1}{3}S}{6}=\dfrac{S}{18}\left(h\right)\)
\(=>vtb=\dfrac{S}{t1+t2+t3}=\dfrac{S}{\dfrac{S}{36}+\dfrac{S}{24}+\dfrac{S}{18}}=\dfrac{S}{\dfrac{432S+648S+864S}{15552}}\)
\(=\dfrac{S}{\dfrac{1944S}{15552}}=\dfrac{15552}{1944}=8km/h\)
Vận tốc trung bình của xe là:
\( v=\dfrac{s}{\dfrac{s}{2}(\dfrac{1}{v_1}+\dfrac{1}{v_2})} =\dfrac{1}{\dfrac{1}{2}(\dfrac{1}{ 12 }+\dfrac{1}{ v_2 })} = 8 (km/h) \)
⇒\(\dfrac{1}{\dfrac{1}{2}(\dfrac{1}{ 12 }+\dfrac{1}{ v_2 })} = 8 (km/h) \)\(\Rightarrow v_2=6\left(\dfrac{km}{h}\right)\)
< phần tính toán chắc bạn làm dc nhỉ ? cố lên nha>
gọi s1 = s2 = s3 = s/3
ta có : v1 = s1/t1 -> t1 = s/3.v1 = s/30
v2 = s2/t2 -> t2 = s/3.v2 = s/24
v3 = s3/t3 -> t3 = s/3.v3 = s/16
Ta có công thức vận tốc trung bình
Vtb = S/t => S/ t1+t2+t3 = S/ s/30 + s/24 + s/16
= S/ 33s/240 = 1/ 33/240 = 240/33 = 7 ( xấp xỉ )