Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi chiều dài là a, chiều rộng là b (ĐK: a > b > 0)
=> S = ab (2)
Tăng chiều dài thêm 2m, chiều rộng thêm 3m thì diện tích tăng thêm 100m2
=> (a + 2).(b + 3) = S + 100
=> ab + 3a + 2b + 6 = S + 100 (1)
Nếu giảm cả chiều dài và chiều rộng của mảnh vườn đó đi 2m thì diện tích giảm 68m2
=> (a - 2).(b - 2) = S - 68
=> ab - 2b - 2a + 4 = S - 68 (3)
Từ (1); (2); (3) ta có hệ PT:
\(\left\{{}\begin{matrix}ab=S\\ab+3a+2b=S+94\\ab-2a-2b=S-72\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3a+2b=94\\5a+4b=166\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6a+4b=188\\5a+4b=166\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=22\left(m\right)\\b=14\left(m\right)\end{matrix}\right.\)
S = ab = 22.14 = 308 (m2)
Gọi chiều dài,chiều rộng của mảnh vườn lần lượt là a,b(m) \(\left(a>b>0\right)\)
Theo đề: \(\left\{{}\begin{matrix}ab=80\\\left(a-2\right)\left(b+3\right)=80+32=112\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}ab=80\left(1\right)\\ab+3a-2b-6=112\left(2\right)\end{matrix}\right.\)
Thế (1) vào (2): \(\Rightarrow3a-2b=38\Rightarrow3a=2b+38\)
Ta có: \(3ab=3.80=240\Rightarrow b\left(2b+38\right)=240\Rightarrow2b^2+38b-240=0\)
\(\Rightarrow\left(b-5\right)\left(b+24\right)=0\) mà \(b>0\Rightarrow b=5\Rightarrow a=16\)
Bài giải
Gọi chiều dài là x(m)
Gọi chiều rộng là y(m)
Diện tích mảnh vườn ban đầu là: x.y=80 (m2) (1)
Diện tích mảnh vườn khi thay đổi chiều dài, chiều rộng là: (x-2).(y+3) = 112 (m2) (2)
từ (1) và (2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}xy=80\\\left(x-2\right)\left(y+3\right)=112\end{matrix}\right.\)
từ (1) => x= \(\dfrac{80}{y}\)
Thay x= \(\dfrac{80}{y}\) vào (2) => x=16 ; y = 5
Vậy...............................
Gọi chiều daì và chiều rộng lần lượt là x và y (x>y; x,y<17; m)
Một mảnh vườn HCN có chu vi 34m nên ta có PT: x+y=17 (1)
Nếu tăng chiều dài thêm 3m và tăng chiều rộng thêm 2m thì diện tích của nó tăng thêm 45m2 nên ta có PT:
(x+3)(y+2)-xy=45
⇔xy+2x+3y+6-xy=45
⇔2x+3y=39 (2)
Từ (1) và (2) ta có HPT: \(\left\{{}\begin{matrix}x+y=17\\2x+3y=39\end{matrix}\right.\)
Giả hệ ra ta có: \(\left\{{}\begin{matrix}x=12\\y=5\end{matrix}\right.\)
Vậy...
Gọi \(x,y\left(m\right)\) là chiều dài và rộng \(\left(x,y>0\right)\)
Theo đề, ta có :
\(\left\{{}\begin{matrix}y+3=x\\\left(x+4\right)\left(y+2\right)=xy+44\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-x+y=-3\\xy+2x+4y+8=xy+44\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-x+y=-3\\2x+4y=36\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=8\left(tm\right)\\y=5\left(tm\right)\end{matrix}\right.\)
Diện tích hình chữ nhật ban đầu : \(8\times5=40\left(m^2\right)\)
Gọi chiều rộng của mảnh vườn ban đầu là x>0 (m)
Chiều dài ban đầu: \(x+2\) (m)
Sau khi tăng kích thước thì chiều rộng là: \(x+3\) (m)
Chiều dài khu vườn sau khi giảm: \(x+1\) (m)
Theo bài ra ta có pt:
\(\left(x+3\right)\left(x+1\right)=99\)
\(\Leftrightarrow x^2+4x-96=0\Rightarrow\left[{}\begin{matrix}x=-12\left(loại\right)\\x=8\end{matrix}\right.\)
Diện tích khu vườn ban đầu: \(8.\left(8+2\right)=80\left(m^2\right)\)
Gọi chiều rộng mảnh vườn là x (m) (x>0)
=> Chiều rộng mảnh vườn: x+24 (m)
Diện tích mảnh vườn ban đầu : x(x+24) (m2)
Theo bài ta có : (x+22)(x+3) = x(x+24)+72
x2 + 3x + 22x + 66 = x2 + 24x + 72
\(\Leftrightarrow x=6\) (tmx>0)
Diện tích mảnh vườn: 6.(6+24) = 180 m2