Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn hai học sinh từ tổ sao cho 2 học sinh cùng giới có 2 công đoạn
\(CD_1:\) Chọn 1 bạn nữ trong 5 bạn nữ \(\Rightarrow\) Có 5 cách chọn
\(CD_2:\) Chọn 1 bạn nam trong 4 bạn nam \(\Rightarrow\) Có 4 cách chọn
Áp dụng quy tắc nhân, ta có : \(5.4=20\) ( cách chọn )
Vậy có 20 cách chọn 2 học sinh từ tổ để 1 bàn có 2 học sinh cùng giới
Lời giải:
Chọn 2 học sinh cùng giới tính nam, có: $C^2_4=6$ cách
Chọn 2 học sinh cùng giới tính nữ, có: $C^2_5=10$ cách
Tổng số cách chọn: $6+10=16$ (cách)
Do 2 tổ này ko chia thứ tự nên ta chỉ cần chọn cho 1 tổ, tổ còn lại sẽ tự phù hợp tương ứng
Gọi tổ cần chọn là A
- A có 1 giỏi 2 khá: \(C_3^1.C_5^2.C_8^5\) cách
- A có 1 giỏi 3 khá: \(C_3^1.C_5^3.C_8^5\) cách
- A có 2 giỏi 2 khá: \(C_3^2.C_5^2.C_8^4\) cách
- A có 2 giỏi 3 khá: \(C_3^2.C_5^3.A_8^3\) cách
Cộng 4 trường hợp lại là được
a: SỐ cách xếp là;
5!*6!*2=172800(cách)
b: Số cách xếp là \(6!\cdot5!=86400\left(cách\right)\)
Số cách chọn là:
\(C^1_4\cdot C^2_5+C^2_4\cdot5+C^3_4=74\left(cách\right)\)
a: Số cách chọn là: \(C^3_{25}=2300\left(cách\right)\)
b: Số cách chọn là: \(C^1_{15}\cdot C^2_{24}=4140\left(cách\right)\)
Ta có: ƯC(28;24)={1;2;4}
Do đó: Có 3 cách chia