K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 9 2021

a) Nếu trong \(5\) học sinh phải có ít nhất \(2\) học sinh nữ và \(2\) học sinh nam thì có \(2\) trường hợp :

\(2\) nam \(3\) nữ, có : \(C^2_{10}.C^3_{10}\) cách: 

\(3\) nam và \(2\) nữ, có : \(C^3_{10}.C^2_{10}\)  cách:

Vậy tất cả có : \(2.C^2_{10}.C^3_{10}=10800\) cách.

b) Nếu trong \(5\)  học sinh phải có ít nhất \(1\) học sinh nữ và \(1\) học sinh nam thì có 4 trường hợp :

\(1\) nam và \(4\) nữ, có: \(C^1_{10}.C^4_{10}\) cách.

\(2\) nam và \(3\) , có : \(C^2_{10}.C^3_{10}\) cách.

Còn lại bn tự lm nha, mỏi tay quá

26 tháng 8 2021

Th1 5hs, trong đó có 4 hs nam,1 hs nữ: 10C4+10C1 cách

th2 5hs, trong đó có 3hs nam,2 hs nữ :10C3+10C2

th3 5hs, trong đó có 2hs nam,2 hs nữ: t tự 

th4 5hs, trong đó có 1 hs nam, 4hs nữ: t tự th1

tổng số cách 2(10C3+10C2+10C4+10C1)=770 cách

4 tháng 12 2017

Đáp án B

Phương pháp giải: Áp dụng các quy tắc đếm cơ bản

Lời giải:

Chọn 2 học sinh trong 20 học sinh có C 20 2 = 190 ⇒ n ( Ω ) = 190 .  

Gọi X là biến cố 2 học sinh được chọn trong đó có cả nam và nữ

Chọn 1 học sinh nam trong 8 nam có 8 cách, chọn 1 học sinh nữ trong 12 nữ có 12 cách.

Suy ra số kết quả thuận lợi cho biến cố X là n(X) = 8.12 = 96.

Vậy  P = n ( X ) N ( Ω ) = 48 95 .

20 tháng 6 2019

Đáp án : A

Để lựa chọn được hai ban thỏa mãn yêu cầu, ta chia làm hai công đoạn.

Công đoạn 1: Chọn một học sinh giỏi nữ, có 9 cách thực hiện.

Công đoạn 2. Chọn một học sinh giỏi nam, có 7 cách thực hiện.

Vậy theo quy tắc nhân, sẽ có 9.7=63 cách lựa chọn.

18 tháng 5 2017

Tổ hợp - xác suất

4 tháng 3 2018

Đáp án C.

Phương pháp giải: Áp dụng các quy tắc đếm cơ bản

Lời giải:

Chọn 3 học sinh trong 10 học sinh có C 10 3  cách => n ( Ω ) = C 10 3 = 120 .  

Gọi  X  là biến cố trong 3 học sinh được chọn có ít nhất một học sinh nữ

Ta xét các trường hợp sau:

TH1. Chọn 1 học sinh nữ và 2 học sinh nam => có  C 7 2 . C 3 1 = 63  cách.

TH2. Chọn 2 học sinh nữ và 1 học sinh nam => có C 7 1 . C 3 2 = 21  cách.

TH3. Chọn 3 học sinh nữ và 0 học sinh nam => có C 3 3 = 1  cách.

Suy ra số kết quả thuận lợi cho biến cố X là n(X) = 63 + 21 + 1 = 85.

Vậy xác suất cần tính là  P = n ( X ) n ( Ω ) = 85 120 = 17 24 .

3 tháng 4 2018

NV
11 tháng 11 2021

a. Chọn bất kì 5 học sinh từ 50 học sinh có: \(C_{50}^5\) cách

b. Lớp có 20 học sinh nam. Chọn 5 bạn trong đó có 2 bạn nam (suy ra 3 bạn nữ) đồng nghĩa: chọn 2 nam từ 20 nam và 3 nữ từ 30 nữ

\(\Rightarrow\) Có \(C_{20}^2.C_{30}^3\) cách

c. Số cách chọn 5 bạn toàn là nữ: \(C_{30}^5\) cách

Số cách chọn 5 bạn có ít nhất 1 nam: \(C_{50}^5-C_{30}^5\) cách

3 tháng 7 2018