Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi chiều rộng là x
Chiều dài là 2x
Theo đề, ta có: (2x-3)(x+2)=x2
=>2x2+4x-3x-6=x2
=>x2+x-6=0
=>(x+3)(x-2)=0
=>x=-3(loại) hoặc x=2(nhận)
Vậy: Chiều dài là 4m
Lời giải:
Giả sử độ dài chiều rộng HCN là aa (m) (a>2) thì độ dài chiều dài HCN là 2a (m)
Khi giảm mỗi chiều đi 22 (m), độ dài các cạnh hình chữ nhật còn lại a−2a−2 (m) và 2a−2 (m)
Diện tích ban đầu: S=a.2a=2a2 (m vuông)
Diện tích sau khi thay đổi kích thước: S′=(a−2)(2a−2)(m vuông)
Theo đề bài: S=2S′
⇔2a2=2(a−2)(2a−2)
⇔a2=(a−2)(2a−2)=2a2−6a+4
⇔a2−6a+4=0
⇒a=3±√5(m). Mà a>2nên a=3+√5 (m)
Do đó chiều dài HCN đã cho là: 2a=6+2√ (m)
Gọi \(x\left(m\right)\) là chiều rộng của hình chữ nhật ban đầu \(\left(x>0\right)\)
Vì hình chữ nhật ban đầu có diện tích bằng 120m2 nên chiều dài của hình chữ nhật ban đầu là \(\dfrac{120}{x}\left(m\right)\)
Từ đây ta giới hạn điều kiện của \(x\): \(\dfrac{120}{x}>x\Leftrightarrow x^2< 120\Leftrightarrow x< 2\sqrt{30}\) (vì \(x>0\) nên nhân cả 2 vế của BPT với x thì BPT không đổi chiều) từ đó \(0< x< 2\sqrt{30}\)
Chiều rộng lúc sau là \(x+2\left(m\right)\)
Chiều dài lúc sau là \(\dfrac{120}{x}-5\left(m\right)\)
Vì hình lúc sau là 1 hình vuông nên ta có pt \(x+2=\dfrac{120}{x}-5\)\(\Leftrightarrow x+7-\dfrac{120}{x}=0\) \(\Rightarrow x^2+7x-120=0\) (1)
pt (1) có \(\Delta=7^2-4.1.\left(-120\right)=529>0\)
Vậy (1) có 2 nghiệm phân biệt \(\left[{}\begin{matrix}x_1=\dfrac{-7+\sqrt{529}}{2}=8\left(nhận\right)\\x_2=\dfrac{-7-\sqrt{529}}{2}=-15\left(loại\right)\end{matrix}\right.\)
Do đó chiều rộng của hình chữ nhật là 8m, chiều dài hình chữ nhật là \(\dfrac{120}{8}=15\left(m\right)\)
Gọi a(m) và b(m) lần lượt là chiều dài và chiều rộng ban đầu của hình chữ nhật(Điều kiện: a>0; b>0 và \(a\ge b\))
Vì chiều dài hơn chiều rộng 5m nên ta có phương trình: a-b=5(1)
Diện tích ban đầu của hình chữ nhật là:
\(ab\left(m^2\right)\)
Vì khi giảm chiều dài đi 2m và tăng chiều rộng gấp đôi thì diện tích lớn hơn diện tích ban đầu 240m2 nên ta có phương trình:
\(\left(a-2\right)\cdot2b=ab+240\)
\(\Leftrightarrow2ab-4b=ab+240\)
\(\Leftrightarrow ab-4b=240\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}a-b=5\\ab-4b=240\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=5+b\\b\left(5+b\right)-4b=240\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=5+b\\5b+b^2-4b=240\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=5+b\\b^2+b-240=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=b+5\\b^2+16b-15b-240=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b+5\\b\left(b+16\right)-15\left(b+16\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=b+5\\\left(b+16\right)\left(b-15\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b+5\\\left[{}\begin{matrix}b+16=0\\b-15=0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=b+5\\\left[{}\begin{matrix}b=-16\left(loại\right)\\b=15\left(nhận\right)\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=20\\b=15\end{matrix}\right.\)(thỏa ĐK)
Vậy: Chiều dài ban đầu là 20m; Chiều rộng ban đầu là 15m
gọi chiều dài hcn là x (m) ( x > 8 )
\(\Rightarrow\)chiều rộng hcn là x-8(m)
theo bài ra ta có pt
( x-8+2) (x - 5 )= 210
(x-6)(x-5)=210
x2 - 11x + 30=210
x2 - 11x - 180= 0
\(\Delta\)= 121 + 4 . 180=841
\(\Rightarrow\)pt có 2 nghiệm pb x1 = \(\frac{11+\sqrt{841}}{2}\)=20 ( TM)
x2= \(\frac{11-\sqrt{841}}{2}\)=-9(KTM)
vậy......
#mã mã#
Gọi a là chiều dài, b là chiều rộng (a, b m; a> b > 0)
Diện tích HCN là S= ab
Nếu tăng mỗi cạnh lên 5m thì S tăng 225 m2m2
=> (a+5)(b+5)= ab+ 225
<=> ab+ 5a+ 5b+ 25= ab+ 225
<=> a+b= 40 (1)
Nếu tăng chiều rộng 2m, giảm chiều dài 5m thì S không đổi
=> (a-5)(b+2)= ab
<=> ab+ 2a - 5b -10= ab
<=> 2a - 5b= 10 (2)
(1)(2) => a= 30; b= 10 (TM)
Vậy chu vi HCN là (30+10).2= 80m
Gọi chiều dài chiều rộng ban đầu của hình chữ nhật là: x;y (m)
ĐK : x>5; y > 0 , x >y
Chiều dài của hình chữ nhật khi giảm đi 5m là : x - 5 (m)
Chiều rộng tăng 2m nên ta có chiều rộng lúc sau là : y + 2 (m)
Vì nếu tăng chiều rộng 2m và giảm chiều dài 5m thì thu được 1 hình vuông nên ta có :
x - 5 = y + 2
<=> x - y = 7 (1)
Diện tích hình chữ nhật ban đầu là: xy = 120(m²) (2)
Từ (1) và (2) ta có hệ :
x - y = 7 và xy = 120 (thế)
Giải hệ ta được x = 15(TMDK ẩn)
y = 8(TMDK ẩn)
Vậy chiều dài và chiều rộng của hình chữu nhật đó lần lượt là 15m và 8m
Tham khảo
Gọi chiều dài của hình chữ nhật là a(m)
Chiều rộng của hình chữ nhật là b(m) Với 0<b<a<120
Theo đề bài:
Diện tích của hcn là 120m^2 => ab=120m^2 (1)
Tăng chiều rộng giảm chiều dài chứ nhỉ?
Nếu tăng chiều rộng 2m và giảm chiều dài 5m thì được hình vuông =>b+2=a-5
\(\left\{{}\begin{matrix}b+2=a-5\\ab=120\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=a-7\\ab=120\end{matrix}\right.\)
⇒a\(^2\)-7a-120=0
⇒(a−15)(a+8)=0⇒a=15⇒b=8
Gọi chiều dài hình chữ nhật ban đầu là \(x\left(m\right),x>0\).
Chiều rộng là: \(\frac{300}{x}\left(m\right)\)
Chiều rộng mới là: \(\frac{300}{x}-3\left(m\right)\)
Chiều dài mới là: \(x+5\left(m\right)\)
Ta có: \(\left(x+5\right)\left(\frac{300}{x}-3\right)=300\)
\(\Leftrightarrow300-3x+\frac{1500}{x}-15=300\)
\(\Leftrightarrow\orbr{\begin{cases}x=20\left(tm\right)\\x=-25\left(l\right)\end{cases}}\)
Vậy chiều dài ban đầu là \(20m\)chiều rộng ban đầu là \(15m\).