Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho mình hỏi chỗ v1 sao lại là 5 . \(\dfrac{4}{3}\pi R^3\) vậy ạ
Diện tích đáy của cái cốc là: \(\pi.4^2=16\pi\left(cm^2\right)\)
Thể tích của \(3\)viên bi là: \(3.\frac{4}{3}\pi.1^3=4\pi\left(cm^3\right)\)
Mực nước cao lên số cen-ti-mét là: \(\frac{4\pi}{16\pi}=0,25\left(cm\right)\)
Nước dâng cao cách miệng cốc: \(12-8-0,25=3,75\left(cm\right)\)
Thể tích của ba viên bi:
\(3.\dfrac{4}{3}\pi.1^3=4\pi\left(cm^3\right)\)
Tổng thể tích nước và 3 viên bi:
\(4\pi+10.\pi.3^2=94\pi\left(cm^3\right)\)
Chiều cao mực nước:
\(h=\dfrac{94\pi}{\pi.3^2}\approx10,44\left(cm\right)\)
Thể tích của cốc nước hình trụ là
\(V_{trụ}=\pi r^2h=\pi.\dfrac{d^2}{4}.h=\pi.\dfrac{8^2}{4}.9=144\pi\left(cm^3\right)\)
Thể tích của viên bi hình cầu là
\(V_{cầu}=\dfrac{4}{3}\pi R^3=\dfrac{4}{3}\pi.3^3=12\pi\left(cm^3\right)\)
Vì khi thả viên bi vào cốc nước đang chứa đầy nước thì lượng nước trào ra ngoài bằng đúng thể tích của viên bi nên lượng nước còn lại trong cốc là \(144\pi-12\pi=132\pi\left(cm^3\right)\approx414,48\left(cm^3\right)=414,48\left(ml\right)\)
Thể tích của cốc nước hình trụ là
Thể tích của viên bi hình cầu là
Vì khi thả viên bi vào cốc nước đang chứa đầy nước thì lượng nước trào ra ngoài bằng đúng thể tích của viên bi nên lượng nước còn lại trong cốc là
Thể tích 10 viên đất là:
10*2^3=80cm3
Diện tích đáy cốc là: pi*R^2=200,96cm2
Mực nước dâng lên:
80/200,96=0,4(cm)