Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có 2! cách xếp 3 phái đoàn vào bàn tròn. Với mỗi cách xếp thì có:
3! cách xếp các thành viên phái đoàn Anh
5! cách xếp các thành viên phái đoàn Pháp
7! cách xếp các thành viên phái đoàn Mỹ
Vậy có tất cả: 2!.3!5!7!=7257600 cách xếp.
Chọn A.
Đáp án là C
Số các hoán vị về màu bi khi xếp thành dãy là 3!
Số cách xếp 3 viên bi đen khác nhau thành dãy là 3!
Số cách xếp 4 viên bi đỏ khác nhau thành dãy là 4!
Số cách xếp 5 viên bi xanh khác nhau thành dãy là 5!
Số cách xếp các viên bi trên thành một dãy sao cho các viên bi cùng màu ở cạnh nhau là 3!. 3!. 4!. 5! = 103680 cách.
Đáp án : C
Để xếp bi thỏa mãn yêu cầu thì các viên bi phải được xếp xen kẽ nhau.
Phương án 1: Vị trí đầu tiên là viên bi đỏ, sau đó xếp tiếp các viên bi còn lại. Vì yêu cầu xếp xen kẽ nên chỉ có 1 cách xếp trong tình huống này.
Phương án 2: Vị trí đầu tiên là viên bi đen. Tương tự như trên, chỉ có 1 cách xếp.
Vậy theo quy tắc cộng, số cách xếp bi thỏa mãn là 1 + 1 = 2 cách.
Xếp cố định 5 giáo viên Toán trên hàng, có 5! cách xếp. Có tất cả 6 khoảng trống gồm khoảng trống giữa 2 giáo viên Toán và vị trí đầu hàng, cuối hàng.
Xếp 4 giáo viên còn lại vào các khoảng trống sao cho mỗi khoảng trống chỉ chứa 1 giáo viên. Số cách xếp 4 giáo viên này là .
Vậy số cách xếp cần tìm là:
Chọn A.
Chọn đáp án A
Do các thành viên cùng câu lạc bộ thì ngồi cạnh nhau nên ta sử dụng phương pháp “buộc” các phần tử để giải quyết bài toán.
Lúc này ta có 3 phần tử đó là 3 câu lạc bộ. Theo công thức hoán vị vòng quanh thì ta có 2! cách xếp 3 câu lạc bộ vào bàn tròn.
Với mỗi cách xếp thì có:
3! cách xếp các thành viên CLB Máu Sư phạm.
5! cách xếp các thành viên CLB Truyền thông.
7!cách xếp các thành viên CLB Kỹ năng.
Vậy theo quy tắc nhân thì có tất cả: 2!.3!.5!.7! = 725760 cách xếp