Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a. 3x(x - 6) - 2x2 = x2 + 6
<=> 3x2 - 18x - 2x2 - x2 - 6 = 0
<=> 3x2 - 2x2 - x2 - 18x - 6 = 0
<=> -18x - 6 = 0
<=> -18x = 6
<=> x = \(\dfrac{6}{-18}=\dfrac{-1}{3}\)
b. (x - 3)(x - 2) - 5 = x2 - 4x
<=> x2 - 2x - 3x + 6 - 5 - x2 + 4x = 0
<=> x2 - x2 - 2x - 3x + 4x + 6 - 5 = 0
<=> -x + 1 = 0
<=> -x = -1
<=> x = 1
c. (x + 5)2 - 8x = x2 + 15
<=> x2 + 10x + 25 - 8x - x2 - 15 = 0
<=> x2 - x2 + 10x - 8x + 25 - 15 = 0
<=> 2x + 10 = 0
<=> 2x = -10
<=> x = -5
d. x2 - 4x + 4 = 0
<=> x2 - 2.2.x + 22 = 0
<=> (x - 2)2 = 0
<=> x - 2 = 0
<=> x = 2
e. x2 + 8x + 16 = 0
<=> x2 + 2.x.4 + 42 = 0
<=> (x + 4)2 = 0
<=> x + 4 = 0
<=> x = -4
f. x2 - 36 = 0
<=> x2 - 62 = 0
<=> (x - 6)(x + 6) = 0
<=> \(\left[{}\begin{matrix}x-6-0\\x+6=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=6\\x=-6\end{matrix}\right.\)
g. (x + 3)2 - 16 = 0
<=> (x + 3)2 - 42 = 0
<=> (x + 3 + 4)(x + 3 - 4) = 0
<=> (x + 7)(x - 1) = 0
<=> \(\left[{}\begin{matrix}x+7=0\\x-1=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=-7\\x=1\end{matrix}\right.\)
k: Ta có: \(\left(x-2\right)\left(x^2+2x+4\right)-2x^3+8\)
\(=x^3-8-2x^3+8\)
\(=-x^3\)
\(\dfrac{2\left(5x+2\right)}{9}-1=\dfrac{4\left(33+2x\right)}{5}-\dfrac{5\left(1-11x\right)}{9}\)
\(\dfrac{10\left(5x+2\right)}{45}-\dfrac{45}{45}=\dfrac{36\left(33+2x\right)}{45}-\dfrac{25\left(1-11x\right)}{45}\)
\(50x-20-45=1188+72x-25+275x\)
\(50x-25=347x+1163\)
\(50x-347x=25+1163\)
\(-297x=1188\)
\(x=4\\ \)
d)
\(\dfrac{2\left(x-4\right)}{3}+\dfrac{3x+13}{8}=\dfrac{2\left(2x-3\right)}{5}+12\)
\(\dfrac{80\left(x-4\right)}{120}+\dfrac{15\left(3x+13\right)}{120}=\dfrac{40\left(2x-3\right)}{120}+\dfrac{1440}{120}\)
\(80x-320+45x+195=80x-120+1440\)
\(125x-125=80x+1320\)
\(125x-80x=125+1320\)
\(45x=1445\)
\(x=\dfrac{1445}{45}\) \(=\dfrac{289}{9}\)
Sai rồi anh ơi 😢
c)S={-4}
d)S={49}
Sách nó viết thế chứ em ko biết nha
Hướng dẫn: A đạt GTLN khi \(\dfrac{1}{A}\) đạt GTNN
Ta có: \(x^2+2\ge0\forall x\)
\(\Rightarrow A=\dfrac{1}{x^2+2}\le\dfrac{1}{2}\forall x\)
Vậy GTLN của A là 1/2
=> A
1. Đ
2. Sai (câu này D mới đúng, C chỉ đúng khi thêm điều kiện a khác 0)
3. A
4. D
5. Sai, B đúng
6. Đ
7. Đ
8. S, đáp án đúng là A
9. S, đáp án đúng là C
10. Đ
11. Đ
12. Đ
13. S, đáp án đúng là A
14. Đ
15. Đ
16. A
17. A đúng (câu này bản thân đề bài ko rõ ràng, lẽ ra phải ghi là "phương trình bậc nhất một ẩn có thể có bao nhiêu nghiệm")
18. C mới là đáp án đúng
-Bài 3:
2) -Áp dụng BĐT Caushy Schwarz ta có:
\(A=\dfrac{1}{x^3+3xy^2}+\dfrac{1}{y^3+3x^2y}\ge\dfrac{\left(1+1\right)^2}{x^3+3xy^2+3x^2y+y^3}=\dfrac{4}{\left(x+y\right)^3}\ge\dfrac{4}{1^3}=4\)-Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)
\(a,a^2-10a+25=\left(a-5\right)^2\\ b,4x^2+4x+1=\left(2x+1\right)^2\\ c,4x^2-9=\left(2x-3\right)\left(2x+3\right)\\ d,x^3+3x^2+3x+1=\left(x+1\right)^3\\ e,a^3-3a^2b+3ab^2-b^3=\left(a-b\right)^3\\ f,y^3+8=\left(y+2\right)\left(y^2-2y+4\right)\\ g,27x^3-1=\left(3x-1\right)\left(9x^2+3x+1\right)\)
\(a^2-10x+25=\left(a-5\right)^2\)
b/ \(4x^2+4x+1=\left(2x+1\right)^2\)
c/ \(4b^2-9=\left(2b-3\right)\left(2b+3\right)\)
d/ \(x^3+3x^2+3x+1=\left(x+1\right)^3\)
e/ \(a^3-3a^2b+3ab^2-b^3=\left(a-b\right)^3\)
f/ \(y^3+8=\left(y+2\right)\left(y^2-2y+4\right)\)
g/ \(27x^3-1=\left(3x-1\right)\left(9x^2+3x+1\right)\)