K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2021

a) \(\dfrac{2x}{3}\)+\(\dfrac{2x-1}{6}\)=4 - \(\dfrac{x}{3}\)

<=>\(\dfrac{2x}{3}\)+\(\dfrac{2x-1}{6}\) - 4+\(\dfrac{x}{3}\)=0

<=>\(\dfrac{2x.2+2x-1-4.6+x.2}{6}\)=0

=>4x-2x-24+2x=0

<=>4x-24=0

<=>4x=24

<=>x=6

Vậy x=6

15 tháng 6 2021

b)\(\dfrac{x-1}{2}\)+\(\dfrac{x-1}{4}\)=1 - \(\dfrac{2\left(x-1\right)}{3}\)

<=>\(\dfrac{x-1}{2}\)+\(\dfrac{x-1}{4}\)-1+\(\dfrac{2\left(x-1\right)}{3}\)=0

<=>\(\dfrac{6.\left(x-1\right)+3\left(x-1\right)-1.12+4.2\left(x-1\right)}{12}\)=0

=>6x-6+3x-3-12+4x-4+2x-2=0

<=>15x-27=0

<=>15x=27

<=>x=\(\dfrac{9}{5}\)

Vậy x=\(\dfrac{9}{5}\)

AH
Akai Haruma
Giáo viên
12 tháng 7 2021

Lời giải.

c.

$x^3-3x^2+3x-1=0$

$\Leftrightarrow (x-1)^3=0$

$\Leftrightarrow x-1=0$

$\Leftrightarrow x=1$

Vậy pt có tập nghiệm $S=\left\{1\right\}$

d. ĐKXĐ: $x\neq \frac{-1}{3}; -3$

PT $\Leftrightarrow \frac{(3x-1)(x+3)+(x-3)(3x+1)}{(3x+1)(x+3)}=2$

$\Leftrightarrow \frac{6x^2-6}{3x^2+10x+3}=2$

$\Leftrightarrow 6x^2-6=2(3x^2+10x+3)$

$\Leftrightarrow 20x+12=0$

$\Leftrightarrow x=\frac{-3}{5}$ (tm)

Vậy tập nghiệm của pt là $S=\left\{\frac{-3}{5}\right\}$

 

 

AH
Akai Haruma
Giáo viên
12 tháng 7 2021

Bài 2:

a. 

\(\left\{\begin{matrix} 2x-3y=11\\ 5x-4y=3\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 10x-15y=55\\ 10x-8y=6\end{matrix}\right.\)

\(\Rightarrow (10x-8y)-(10x-15y)=6-55\)

\(\Leftrightarrow 7y=-49\Leftrightarrow y=-7\)

\(x=\frac{3y+11}{2}=\frac{3.(-7)+11}{2}=-5\)

Vậy hpt có nghiệm $(x,y)=(-5,-7)$

b. Không đủ cơ sở để tìm $x,y$

c. 

\(\left\{\begin{matrix} 5x+3y=\lambda\\ -x+\lambda y=-8\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 5x+3y=\lambda\\ -5x+5\lambda y=-40\end{matrix}\right.\)

\(\Rightarrow (3+5\lambda)y=\lambda-40\)

Nếu $\lambda = \frac{-3}{5}$ thì $0.y=\frac{-203}{5}$ (vô lý) nên hpt vô nghiệm

Nếu $\lambda \neq \frac{-3}{5}$ thì:

$y=\frac{\lambda - 40}{3+5\lambda}$

$x=8+\lambda y=\frac{\lambda ^2+24}{5\lambda +3}$

NV
26 tháng 3 2022

1.

\(\left(x+y\right)^2=\left(\dfrac{1}{2}.2x+\dfrac{1}{3}.3y\right)^2\le\left(\dfrac{1}{4}+\dfrac{1}{9}\right)\left(4x^2+9y^2\right)=\dfrac{169}{36}\)

\(\Rightarrow-\dfrac{13}{6}\le x+y\le\dfrac{13}{6}\)

Dấu "=" lần lượt xảy ra tại \(\left(-\dfrac{3}{2};-\dfrac{2}{3}\right)\) và \(\left(\dfrac{3}{2};\dfrac{2}{3}\right)\)

2.

\(\left(y-2x\right)^2=\left(\dfrac{1}{4}.4y+\left(-\dfrac{1}{3}\right).6x\right)^2\le\left(\dfrac{1}{16}+\dfrac{1}{9}\right)\left(16y^2+36x^2\right)=\dfrac{25}{16}\)

\(\Rightarrow\left|y-2x\right|\le\dfrac{5}{4}\)

Dấu "=" xảy ra khi \(\left(x;y\right)=\left(\mp\dfrac{2}{5};\pm\dfrac{9}{20}\right)\)

NV
26 tháng 3 2022

3.

\(B^2=\left(6.\sqrt{x-1}+8\sqrt{3-x}\right)^2\le\left(6^2+8^2\right)\left(x-1+3-x\right)=200\)

\(\Rightarrow B\le2\sqrt{10}\)

Dấu "=" xảy ra khi \(\dfrac{\sqrt{x-1}}{6}=\dfrac{\sqrt{3-x}}{8}\Leftrightarrow x=\dfrac{43}{25}\)

\(B=6\sqrt{x-1}+6\sqrt{3-x}+2\sqrt{3-x}\ge6\sqrt{x-1}+6\sqrt{3-x}\)

\(B\ge6\left(\sqrt{x-1}+\sqrt{3-x}\right)\ge6\sqrt{x-1+3-x}=6\sqrt{2}\)

\(B_{min}=6\sqrt{2}\) khi \(\sqrt{3-x}=0\Rightarrow x=3\)

4.

\(49=\left(3a+4b\right)^2=\left(\sqrt{3}.\sqrt{3}a+2.2b\right)^2\le\left(3+4\right)\left(3a^2+4b^2\right)\)

\(\Rightarrow3a^2+4b^2\ge\dfrac{49}{7}=7\)

Dấu "=" xảy ra khi \(a=b=1\)

25 tháng 3 2022

- Gọi quãng đường AB là x (km)
vì thời gian là bằng quãng đường chia vận tốc, ta có:
- Thời gian của ô tô là \(\dfrac{x}{50}\) (km)
- Thời gian của xe máy là \(\dfrac{x}{40}\) (km)
vì ta dùng đơn vị là km/h nên ta phải đổi 30 phút qua giờ, ta có:
- Đổi: 30 phút = 0,5 giờ
vì thời gian đi của ô tô ít hơn xe máy là 0,5 giờ nên ta có phương trình:
\(\dfrac{x}{40}\) \(-\) \(\dfrac{x}{50}\) = 0,5 
\(\Leftrightarrow\) \(\dfrac{x\times50}{40\times50}\)\(-\)\(\dfrac{x\times40}{50\times40}\) = \(\dfrac{0,5\times40\times50}{40\times50}\)
\(\Leftrightarrow\) \(\dfrac{50x}{40\times50}\)\(-\dfrac{40x}{50\times40}=\dfrac{1000}{50\times40}\)
\(\Rightarrow\) 50x - 40x = 1000
\(\Leftrightarrow\)10x = 1000
\(\Leftrightarrow\) x = 1000 : 10
\(\Leftrightarrow\) x = 100
vậy quãng đường AB là 100 (km)
----chúc cậu học tốt----

25 tháng 3 2022

Đổi \(30phút=\dfrac{1}{2}h\)

Gọi quãng đường AB là \(x\left(km;x>0\right)\)

Thì thời gian ô tô đi từ A đến B là \(\dfrac{x}{50}\left(h\right)\)

Thời gian xe máy đi từ A đến B là \(\dfrac{x}{40}\left(h\right)\)

Vì thời gian đi từ A đến B của ô tô ít hơn của xe máy là \(\dfrac{1}{2}h\) nên ta có phương trình :

\(\dfrac{x}{40}-\dfrac{x}{50}=\dfrac{1}{2}\)

\(\Leftrightarrow5x-4x=100\)

\(\Leftrightarrow x=100\left(nhận\right)\)

Vậy quãng đường AB dài \(100km\)

b: \(\Leftrightarrow\left(2x-7\right)\left(3x+7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=-\dfrac{7}{3}\end{matrix}\right.\)

13 tháng 11 2021

cái này là mình đang hỏi toán mà bạn

13 tháng 11 2021

a: Xét tứ giác AEDF có 

AE//DF

AF//DE

Do đó: AEDF là hình bình hành

mà \(\widehat{DAE}=90^0\)

nên AEDF là hình chữ nhật

10 tháng 10 2021

Bài 2: 

a: Xét ΔEHK và ΔGFI có 

\(\widehat{EHK}=\widehat{GFI}\)

EH=GF

\(\widehat{E}=\stackrel\frown{G}\)

Do đó: ΔEHK=ΔGFI

Suy ra: EK=GI và KH=IF

Ta có: EK+KF=EF

GI+IH=GH

mà EF=GH

và EK=GI

nên KF=IH

Xét tứ giác FKHI có 

FK=HI

HK=FI

Do đó: FKHI là hình bình hành