Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 3:
2: Xét tứ giác OKEH có
\(\widehat{OKE}=\widehat{OHE}=\widehat{KOH}=90^0\)
Do đó: OKEH là hình chữ nhật
mà đường chéo OE là tia phân giác của \(\widehat{KOH}\)
nên OKEH là hình vuông
4:
a: góc OBA+góc OCA=180 độ
=>OBAC nội tiếp
b: Xét (O) có
AB,AC là tiếp tuyến
=>AB=AC
mà OB=OC
nên OA là trung trực của BC
=>OA vuông góc BC tại H
=>AB^2=AH*AO
Đề 1:
a) Xét tứ giác BDHF có: \(\widehat{BDF}+\widehat{BHF}=90^o+90^o=180^o\)
=> Tứ giác BDHF nội tiếp đường tròn
b) Xét tứ giác BFEC có: \(\widehat{BFC}=\widehat{BEC}=90^o\) => BFEC là tứ giác nội tiếp
=> \(\widehat{BCF}=\widehat{BEF}\) (cùng nhìn cạnh BF) hay \(\widehat{BCN}=\widehat{BEF}\)
Xét đường tròn (O) có \(\widehat{BCN}=\widehat{BMN}\) (cùng chắn \(\stackrel\frown{BN}\)) => \(\widehat{BEF}=\widehat{BMN}\)
Mà 2 góc ở vị trí đồng vị => MN//EF
c) BDHF là tứ giác nội tiếp (cmt) => \(\widehat{DBH}=\widehat{DFH}\) (cùng nhìn cạnh DH)
BFEC là tứ giác nội tiếp (cmt) => \(\widehat{CBE}=\widehat{CFE}\) (cùng nhìn cạnh CE)
hay \(\widehat{DBH}=\widehat{HFE}\) => \(\widehat{DHF}=\widehat{HFE}\left(=\widehat{DBH}\right)\)=> FH là phân giác \(\widehat{DFE}\)
CMTT => EH là phân giác \(\widehat{DEF}\)
Xét ΔDEF có H là giao điểm 2 đường phân giác => H là tâm đường tròn nội tiếp ΔDEF
Đề 2:
a) Xét tứ giác MAOB có: \(\widehat{MAO}+\widehat{MBO}=90^o+90^o=180^o\)
=> Tứ giác MAOB nội tiếp đường tròn
b) Xét đường tròn (O) có: \(\widehat{IBF}=\widehat{A_1}\) (cùng chắn \(\stackrel\frown{BF}\))
Xét ΔIBF và ΔIAB có: \(\widehat{AIB}\) chung; \(\widehat{IBF}=\widehat{A_1}\) (cmt) => ΔIBF ~ ΔIAB (g.g)
=> \(\dfrac{IB}{IA}=\dfrac{IF}{IB}\) => IB2 = IF.IA (1)
c) Do AE // MB (gt) => \(\widehat{E_1}=\widehat{M_1}\) (2 góc so le trong)
Xét đường tròn (O) có \(\widehat{E_1}=\widehat{FAM}\) (cùng chắn \(\stackrel\frown{AF}\)) => \(\widehat{M_1}=\widehat{FAM}\)
Xét ΔIFM và ΔIMA có: \(\widehat{AMI}\) chung; \(\widehat{M_1}=\widehat{FAM}\) (cmt)
=> ΔIFM ~ ΔIMA (g.g) => \(\dfrac{IF}{IM}=\dfrac{IM}{IA}\) => IM2 = IF.IA (2)
Từ (1) và (2) => IB2 = IM2 => IB = IM
3: góc AMN=góic ACM
=>AM là tiếp tuyến của đường tròn ngoại tiếp ΔECM
=>góc AMB=90 độ
=>Tâm o1 của đường tròn ngoại tiếp ΔECM nằm trên BM
NO1 min khi NO1=d(N;BM)
=>NO1 vuông góc BM
Gọi O1 là chân đường vuông góc kẻ từ N xuống BM
=>O1 là tâm đường tròn ngoại tiếp ΔECM có bán kính là O1M
=>d(N;tâm đường tròn ngoại tiếp ΔECM) nhỏ nhất khi C là giao của (O1;O1M) với (O) với O1 ;là hình chiếu vuông góc của N trên BM
a) Thay m=2 vào pt, ta được:
\(x^2-3x+2=0\)
a=1; b=-3; c=2
Vì a+b+c=0 nên phương trình có hai nghiệm phân biệt là:
\(x_1=1;x_2=\dfrac{c}{a}=\dfrac{2}{1}=2\)
Câu 2:
a, bạn tự vẽ được nhớ tìm tọa dộ nhé
x 0 0
y 0 0
b, Vì tung độ của điểm nằm trên P có hoành độ bằng 8
=> x = 8
Thay x = 8 vào y = 1/2x^2 ta được :
\(y=\dfrac{1}{2}.64=32\)
Bài 4:
a) Ta có: \(B=\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}+1-\dfrac{2x+\sqrt{x}}{\sqrt{x}}\)
\(=\dfrac{\sqrt{x}\left(x\sqrt{x}+1\right)}{x-\sqrt{x}+1}+1-\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}\)
\(=\sqrt{x}\left(\sqrt{x}+1\right)+1-2\sqrt{x}-1\)
\(=x+\sqrt{x}-2\sqrt{x}\)
\(=x-\sqrt{x}\)