K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2021

Câu 2: 

a, bạn tự vẽ được nhớ tìm tọa dộ nhé 

x      0       0

y      0       0 

b, Vì tung độ của điểm nằm trên P có hoành độ bằng 8 

=> x = 8

Thay x = 8 vào y = 1/2x^2 ta được : 

\(y=\dfrac{1}{2}.64=32\)

 

 

Bài 4: 

a) Ta có: \(B=\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}+1-\dfrac{2x+\sqrt{x}}{\sqrt{x}}\)

\(=\dfrac{\sqrt{x}\left(x\sqrt{x}+1\right)}{x-\sqrt{x}+1}+1-\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}\)

\(=\sqrt{x}\left(\sqrt{x}+1\right)+1-2\sqrt{x}-1\)

\(=x+\sqrt{x}-2\sqrt{x}\)

\(=x-\sqrt{x}\)

Câu 3:

2: Xét tứ giác OKEH có 

\(\widehat{OKE}=\widehat{OHE}=\widehat{KOH}=90^0\)

Do đó: OKEH là hình chữ nhật

mà đường chéo OE là tia phân giác của \(\widehat{KOH}\)

nên OKEH là hình vuông

4:

a: góc OBA+góc OCA=180 độ

=>OBAC nội tiếp

b: Xét (O) có

AB,AC là tiếp tuyến

=>AB=AC

mà OB=OC

nên OA là trung trực của BC

=>OA vuông góc BC tại H

=>AB^2=AH*AO

 

1 tháng 5 2021

Đề 1:

A B C D E F M N H

a) Xét tứ giác BDHF có: \(\widehat{BDF}+\widehat{BHF}=90^o+90^o=180^o\)

=> Tứ giác BDHF nội tiếp đường tròn

b) Xét tứ giác BFEC có: \(\widehat{BFC}=\widehat{BEC}=90^o\) => BFEC là tứ giác nội tiếp

=> \(\widehat{BCF}=\widehat{BEF}\) (cùng nhìn cạnh BF) hay \(\widehat{BCN}=\widehat{BEF}\)

Xét đường tròn (O) có \(\widehat{BCN}=\widehat{BMN}\) (cùng chắn \(\stackrel\frown{BN}\)) => \(\widehat{BEF}=\widehat{BMN}\)

Mà 2 góc ở vị trí đồng vị => MN//EF

c) BDHF là tứ giác nội tiếp (cmt) => \(\widehat{DBH}=\widehat{DFH}\) (cùng nhìn cạnh DH)

BFEC là tứ giác nội tiếp (cmt) => \(\widehat{CBE}=\widehat{CFE}\) (cùng nhìn cạnh CE) 

hay \(\widehat{DBH}=\widehat{HFE}\) => \(\widehat{DHF}=\widehat{HFE}\left(=\widehat{DBH}\right)\)=> FH là phân giác \(\widehat{DFE}\)

CMTT => EH là phân giác \(\widehat{DEF}\) 

Xét ΔDEF có H là giao điểm 2 đường phân giác => H là tâm đường tròn nội tiếp ΔDEF

1 tháng 5 2021

Đề 2: 

M A O B E F I 1 1 1

a) Xét tứ giác MAOB có: \(\widehat{MAO}+\widehat{MBO}=90^o+90^o=180^o\)

=> Tứ giác MAOB nội tiếp đường tròn

b) Xét đường tròn (O) có: \(\widehat{IBF}=\widehat{A_1}\) (cùng chắn \(\stackrel\frown{BF}\))

Xét ΔIBF và ΔIAB có: \(\widehat{AIB}\) chung; \(\widehat{IBF}=\widehat{A_1}\) (cmt) => ΔIBF ~ ΔIAB (g.g)

=> \(\dfrac{IB}{IA}=\dfrac{IF}{IB}\) => IB2 = IF.IA  (1)

c) Do AE // MB (gt) => \(\widehat{E_1}=\widehat{M_1}\) (2 góc so le trong)

Xét đường tròn (O) có \(\widehat{E_1}=\widehat{FAM}\) (cùng chắn \(\stackrel\frown{AF}\)) => \(\widehat{M_1}=\widehat{FAM}\)

Xét ΔIFM và ΔIMA có: \(\widehat{AMI}\) chung; \(\widehat{M_1}=\widehat{FAM}\) (cmt)

=> ΔIFM ~ ΔIMA (g.g) => \(\dfrac{IF}{IM}=\dfrac{IM}{IA}\) => IM2 = IF.IA  (2)

Từ (1) và (2) => IB2 = IM2 => IB = IM

3: góc AMN=góic ACM

=>AM là tiếp tuyến của đường tròn ngoại tiếp ΔECM

=>góc AMB=90 độ

=>Tâm o1 của đường tròn ngoại tiếp ΔECM nằm trên BM

NO1 min khi NO1=d(N;BM)

=>NO1 vuông góc BM

Gọi O1 là chân đường vuông góc kẻ từ N xuống BM

=>O1 là tâm đường tròn ngoại tiếp ΔECM  có bán kính là O1M
=>d(N;tâm đường tròn ngoại tiếp ΔECM) nhỏ nhất khi C là giao của (O1;O1M) với (O) với O1 ;là hình chiếu vuông góc của N trên BM

a) Thay m=2 vào pt, ta được:

\(x^2-3x+2=0\)

a=1; b=-3; c=2

Vì a+b+c=0 nên phương trình có hai nghiệm phân biệt là:

\(x_1=1;x_2=\dfrac{c}{a}=\dfrac{2}{1}=2\)