K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 6 2019

\(25\cdot\left(-\frac{1}{5}\right)^3+\frac{1}{5}-2\cdot\left(-\frac{1}{2}\right)^2-\frac{1}{2}\)

\(=25\cdot\left(-\frac{1}{125}\right)+\frac{1}{5}-2\cdot\frac{1}{4}-\frac{1}{2}\)

\(=-\frac{1}{5}+\frac{1}{5}-\frac{1}{2}-\frac{1}{2}\)

\(=0-\frac{1}{2}-\frac{1}{2}=-1\)

17 tháng 6 2019

\(=25\cdot\frac{-1}{125}+\frac{1}{5}-2\cdot\frac{1}{4}-\frac{1}{2}\)

\(=-\frac{1}{5}+\frac{1}{5}-\frac{1}{2}-\frac{1}{2}\)

\(=-1\)

(2/3×x-1/3)=2/3+1/3

(2/3×x-1/3)=3/3

2/3×x=3/3+1/3

2/3×x=4/3

x=4/3:3/2

x=4/3×2/3

x=8/9

13 tháng 6 2020

Cảm ơn mn lần nx ạ

30 tháng 4 2018

a) \(x=\frac{9}{10}\)

b) \(x=\frac{-4}{3}\)

c) \(x=\frac{1}{42}\)

d) \(x=\frac{-47}{10}\)

ko có thời gian nên mình chỉ cho đáp án thôi nhé

thông cảm cho mình ngen

đúng thì k đấy

chúc bạn học giỏi

30 tháng 4 2018

làm chi tiết cho mk nhé

ai làm chi tiết mk k cho nhìu

13 tháng 4 2019

\(\frac{1}{3}x+\frac{2}{5}\left(x-1\right)=0\)

\(\Leftrightarrow\frac{1}{3}x+\frac{2}{5}x-\frac{2}{5}=0\)

\(\Leftrightarrow\frac{1}{3}x+\frac{2}{5}x=0+\frac{2}{5}\)

\(\Leftrightarrow x\left(\frac{1}{3}+\frac{2}{5}\right)=\frac{2}{5}\)

\(\Leftrightarrow x\left(\frac{5}{15}+\frac{6}{15}\right)=\frac{2}{5}\)

\(\Leftrightarrow\frac{11}{15}x=\frac{2}{5}\)

\(\Leftrightarrow x=\frac{2}{5}\div\frac{11}{15}\)

\(\Leftrightarrow x=\frac{6}{11}\)

13 tháng 4 2019

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{49}{50}\)

\(\Leftrightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{49}{50}\)

\(\Leftrightarrow2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{49}{50}\)

\(\Leftrightarrow2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{49}{50}\)

\(\Leftrightarrow2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{49}{50}\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{49}{50}\div2\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{49}{50}\times\frac{1}{2}\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{49}{100}\)

\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{49}{100}\)

\(\Leftrightarrow\frac{1}{x+1}=\frac{50}{100}-\frac{49}{100}\)

\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{100}\)

\(\Leftrightarrow x+1=100\)

\(\Leftrightarrow x=100-1\)

\(\Leftrightarrow x=99\)

25 tháng 2 2020

D = \(\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right)....\left(\frac{1}{100^2}-1.\right)\)

=>\(-\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right)....\left(1-\frac{1}{100^2}.\right)\)

=>\(-\frac{2^2-1}{2^2}.\frac{3^2-1}{3^2}.\frac{4^2-1}{4^2}...\frac{100^2-1}{100^2}\)

=>\(-\left(\frac{1.3}{2^2}.\frac{2.4}{3^2}.\frac{3.5}{4^2}....\frac{99.101}{100^2}\right)\)

=>\(-\left(\frac{1.2.3...99}{2.3.4....100}\right)\left(\frac{3.4.5....101}{2.3.4....100}\right)\)

=>\(-\left(\frac{1}{100}.\frac{101}{2}\right)\)

=>\(D=-\frac{101}{200}\)

\(\left(2x+\frac{3}{5}\right)^2-\frac{9}{25}=0\)

\(\Leftrightarrow\left(2x+\frac{3}{5}\right)^2=\frac{9}{25}\)

\(\Leftrightarrow\left(2x+\frac{3}{5}\right)^2=\left(\frac{3}{5}\right)^2\)

\(\Leftrightarrow\orbr{\begin{cases}2x+\frac{3}{5}=\frac{3}{5}\\2x+\frac{3}{5}=-\frac{3}{5}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}2x=0\\2x=-\frac{6}{5}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\frac{3}{5}\end{cases}}\)

_Tần vũ_

\(3\left(3x-\frac{1}{2}\right)^3+\frac{1}{9}=0\)

\(\Leftrightarrow3\left(3x-\frac{1}{2}\right)^3=-\frac{1}{9}\)

\(\Leftrightarrow\left(3x-\frac{1}{2}\right)^3=-\frac{1}{27}\)

\(\Leftrightarrow\left(3x-\frac{1}{2}\right)^3=\left(-\frac{1}{3}\right)^3\)

\(\Leftrightarrow3x-\frac{1}{2}=\frac{-1}{3}\)

\(\Leftrightarrow3x=\frac{1}{6}\)

\(\Leftrightarrow x=\frac{1}{18}\)

_Tần Vũ_

28 tháng 7 2019

\(C=(\frac{2}{3}-\frac{1}{4}+\frac{5}{11}):(\frac{5}{12}+1-\frac{7}{11})\)

\(=\left(\frac{88}{132}-\frac{33}{132}+\frac{60}{132}\right):\left(\frac{55}{132}+\frac{132}{132}-\frac{84}{132}\right)=\left(\frac{115}{132}\right):\frac{103}{132}=\frac{115}{132}.\frac{132}{103}=\frac{115}{103}\)

\(D=1\frac{1}{3}+\frac{1}{8}:\left(0,75-\frac{1}{2}\right)-\frac{25}{100}.\frac{1}{2}=\frac{1}{3}+\frac{1}{8}:\frac{1}{4}-\frac{1}{8}=\frac{1}{3}+\frac{1}{2}-\frac{1}{8}=\frac{8+12-3}{24}=\frac{17}{24}\)

\(E=\left(-\frac{1}{2}\right)^2-\left(-2\right)^2-5^0=\frac{1}{4}-4-1=\frac{1-16-4}{4}=\frac{-19}{4}\)