Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔBAC
Suy ra: MN//BC
hay BCMN là hình thang
a: Xét ΔADC có DA=DC
nên ΔADC cân tại D
mà DH là đường cao ứng với cạnh đáy AC
nên DH là tia phân giác của \(\widehat{ADC}\)
a: Xét ΔABC có HG//BC
nên AH/HB=AG/GC(1)
Xét ΔADC có EG//DC
nên AG/GC=AE/ED(2)
Từ (1) và (2) suy ra AH/HB=AE/ED
hay HE//BD
b: Xét ΔABD có EH//BD
nên \(\dfrac{AE}{ED}=\dfrac{AH}{HB}\)
hay \(AE\cdot HB=AH\cdot ED\)
a.
Do ABCD là hình chữ nhật \(\Rightarrow\widehat{HBA}=\widehat{CDB}\) (so le trong)
Xét hai tam giác HBA và CDB có:
\(\left\{{}\begin{matrix}\widehat{HBA}=\widehat{CDB}\left(cmt\right)\\\widehat{AHB}=\widehat{BCD}=90^0\end{matrix}\right.\) \(\Rightarrow\Delta HBA\sim\Delta CDB\left(g.g\right)\)
b.
Xét hai tam giác AHD và BAD có:
\(\left\{{}\begin{matrix}\widehat{ADB}\text{ chung}\\\widehat{AHD}=\widehat{BAD}=90^0\end{matrix}\right.\) \(\Rightarrow\Delta AHD\sim\Delta BAD\left(g.g\right)\)
\(\Rightarrow\dfrac{AD}{DB}=\dfrac{DH}{AD}\Rightarrow AD^2=DH.DB\)
c.
Áp dụng định lý Pitago cho tam giác vuông BAD:
\(DB=\sqrt{AD^2+AB^2}=\sqrt{BC^2+AB^2}=\sqrt{6^2+8^2}=10\left(cm\right)\)
Theo chứng minh câu b:
\(AD^2=DH.DB\Rightarrow DH=\dfrac{AD^2}{DB}=\dfrac{BC^2}{DB}=\dfrac{6^2}{10}=3,6\left(cm\right)\)
Áp dụng Pitago cho tam giác vuông AHD:
\(AH=\sqrt{AD^2-HD^2}=\sqrt{6^2-3,6^2}=4,8\left(cm\right)\)
b: Xét tứ giác ACDB có
M là trung điểm của AD
M là trung điểm của BC
Do đó: ACBD là hình bình hành
mà \(\widehat{BAC}=90^0\)
nên ABCD là hình chữ nhật