Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔAOM và ΔBOM có:
+ Góc AOM = BOM.
+ OM là cạnh huyền chung.
+ Góc OAM = OBM = 90.
Nên ΔAOM = ΔBOM (ch-gn).
=>OM là đường trung trực của đoạn thẳng AB.
b) tam giác DMC là tam giác cân.
Xét ΔADM và ΔBCM có:
+ Góc MAD = MBC = 90.
+ Góc AMD = CMB (đối đỉnh).
+ AM = BM (ΔAOM = ΔBOM).
Nên ΔADM = ΔBCM (g.c.g).
=> DM = CM.
Nên ΔDMC là tam giác cân.
c) Ta có ΔDMC là tam giác cân, Nên DM + MC > DC.
Xét ΔADM có AM là cgv nên: AM< DM =>2AM < DC.
<=> AM + DM < DC
a,b: Xét ΔOAM vuông tại A và ΔOBM vuông tạiB co
OM chung
góc AOM=góc BOM
=>ΔOAM=ΔOBM
=>OA=OB và MA=MB
=>ΔOAB cân tại O
c: Xét ΔMAD vuông tại A và ΔMBE vuông tại B có
MA=MB
góc AMD=góc BME
=>ΔMAD=ΔMBE
=>MD=ME