Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
dễ thấy tứ giác ADME là hình chữ nhật do có 3 góc vuông
nên chu vi ADME=2(AE+EM)
mà do ABC vuông cân nên góc ECM =45 độ nên MEC vuông cân tại E nên EM=EC
nên chu vi ADME=2(AE+EM)=2(AE+EC)=2AC là không đổi
b.DE=AM nhỏ nhaasrt khi M là hình chiếu của A lên BC
a) -Xét tứ giác AHMK có:
\(\widehat{AHM}=\widehat{HAK}=\widehat{AKM}=90^0\) nên AHMK là hình chữ nhật.
=>\(AM=HK\) (t/c hình chữ nhật).
b) Gỉa sử \(AM\perp HK\).
- Xét hình chữ nhật AHMK có:
\(AM\perp HK\) (gt)
=>AHMK là hình vuông.
=>AM là tia phân giác của \(\widehat{BAC}\) (t/c hình vuông).
- Vậy điểm M là giao điểm của đường phân giác \(\widehat{BAC}\) với cạnh BC thì
\(AM\perp HK\).
c) - Kẻ \(AM'\perp BC\) tại M'
=>\(AM\ge AM'\) (quan hệ giữa đường vuông góc và đường xiên).
- minAM=AM' ⇔\(AM\perp BC\) tại M.
Mà \(AM=HK\) =>- minHK=AM' ⇔\(AM\perp BC\) tại M.
- Vậy điểm M là chân đường vuông góc kẻ từ A đến BC thì K có độ dài nhỏ nhất.
a, \(MD//AB,AB\perp AC\left(gt\right)\Rightarrow MD\perp AC\Rightarrow\widehat{MDA}=90^0\)
\(ME//AC,AB\perp AC\left(gt\right)\Rightarrow ME\perp AB\Rightarrow\widehat{MEA}=90^0\)
Tứ giác MDAE có 3 góc vuông nên là hình chữ nhật.
b, Hình chữ nhật có 1 đường chéo là đường phân giác thì là hình vuông
Do đó: \(MDAE\) là hình vuông \(\Leftrightarrow\) AM là tia phân giác của \(\widehat{DAE}\)
Vậy M là giao điểm giữa tia p/g của \(\widehat{DAE}\) và cạnh BC thì MDAE là hình vuông.
c, MDAE là hình chữ nhật (cmt) \(\Rightarrow DE=AM\) (tính chất của HCN)
AM ngắn nhất khi AM là đường cao.
Vậy DE ngắn nhất khi AM là đường cao của \(\Delta ABC.\)
Chúc bạn học tốt.
a: Xét tứ giác AEMF có
\(\widehat{FAE}=\widehat{AFM}=\widehat{AEM}=90^0\)
Do đó: AEMF là hình chữ nhật
b: Xét ΔAIM vuông tại I có AM là cạnh huyền
nên AM>AI