Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2. \(\frac{1995.1994-1}{1993.1995+1994}=\frac{1995.\left(1993+1\right)-1}{1993.1995+1994}=\frac{1995.1993+1995-1}{1993.1995+1994}=\frac{1995.1993+1994}{1993.1995+1994}\)
1. \(\frac{4}{3.7}+\frac{5}{7.12}+\frac{1}{12.13}+\frac{7}{13.20}+\frac{3}{20.23}\)
\(=\frac{7-3}{3.7}+\frac{12-7}{7.12}+\frac{13-12}{12.13}+\frac{23-20}{20.23}\)
\(=\left[\frac{7}{3.7}-\frac{3}{3.7}\right]+\left[\frac{12}{7.12}-\frac{7}{7.12}\right]+\left[\frac{13}{12.13}-\frac{12}{12.13}\right]+\left[\frac{20}{13.20}-\frac{13}{13.20}\right]+\left[\frac{23}{20.23}-\frac{20}{20.23}\right]\) \(=\left[\frac{1}{3}-\frac{1}{7}\right]+\left[\frac{1}{7}-\frac{1}{12}\right]+\left[\frac{1}{12}-\frac{1}{13}\right]+\left[\frac{1}{13}-\frac{1}{20}\right]+\left[\frac{1}{20}-\frac{1}{23}\right]\) \(=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{12}+\frac{1}{12}-\frac{1}{13}+\frac{1}{13}-\frac{1}{20}+\frac{1}{20}-\frac{1}{23}\) \(=\frac{1}{3}-\frac{1}{23}\\ =\frac{20}{69}\)
\(F=\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+...+\frac{1}{190}\)
\(\Rightarrow\)\(\frac{1}{2}F=\frac{1}{2}.\left(\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+...+\frac{1}{190}\right)\)
\(\Rightarrow\) \(\frac{1}{2}F=\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+...+\frac{1}{380}\)
\(\Rightarrow\) \(\frac{1}{2}F=\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{19.20}\)
\(\Rightarrow\) \(\frac{1}{2}F=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{19}-\frac{1}{20}\)
\(\Rightarrow\) \(\frac{1}{2}F=\frac{1}{5}-\frac{1}{20}\)
\(\Rightarrow\) \(\frac{1}{2}F=\frac{4}{20}-\frac{1}{20}\)
\(\Rightarrow\) \(\frac{1}{2}F=\frac{3}{20}\)
\(\Rightarrow\)\(F=\frac{3}{20}\div\frac{1}{2}\)
\(\Rightarrow\) \(F=\frac{3}{20}.2\)
\(\Rightarrow\)\(F=\frac{3}{10}\)
\(F=\frac{1}{15}+\frac{ 1}{21}+...+\frac{1}{190}\)
\(F=\frac{2}{30}+\frac{2}{21}+...+\frac{2}{380}\)
\(F=\frac{2}{5.6}+...+\frac{2}{19.20}\)
\(F=2.\left(\frac{1}{5.6}+...+\frac{1}{19.20}\right)\)
\(F=2.\left(\frac{1}{5}-\frac{1}{6}+...+\frac{1}{19}-\frac{1}{20}\right)\)
\(F=2\left[\frac{1}{5}-\left(\frac{1}{6}-\frac{1}{6}\right)-...-\left(\frac{1}{19}-\frac{1}{19}\right)-\frac{1}{20}\right]\)
\(F=2.\left(\frac{1}{5}-\frac{1}{20}\right)\)
\(F=2.\frac{3}{20}\)
\(F=\frac{6}{20}=\frac{3}{10}\)
\(G=\frac{12}{84}+\frac{12}{210}+...+\frac{12}{2100}\)
\(G=\frac{4}{28}+\frac{4}{70}+...+\frac{4}{700}\)
\(G=\frac{4}{4.7}+\frac{4}{7.10}+...+\frac{4}{25.28}\)
\(G=\frac{4}{3}.\left(\frac{3}{4.7}+...+\frac{3}{25.28}\right)\)
\(G=\frac{4}{3}.\left(\frac{1}{4}-\frac{1}{7}+...+\frac{1}{25}-\frac{1}{28}\right)\)
\(G=\frac{4}{3}.\left(\frac{1}{4}-\frac{1}{28}\right)\)
\(G=\frac{4}{3}.\frac{6}{28}\)
\(G=\frac{2}{7}\)
Tổng của G và F là : \(\frac{3}{10}+\frac{2}{7}=\frac{21}{70}+\frac{20}{70}=\frac{41}{70}\)
\(\frac{x+1}{3}=\frac{9}{2}\)
\(\left(x+1\right).2=9.3\)
\(\left(x+1\right).2=27\)
\(x+1=27:2\)
\(x+1=13,5\)
\(x=13,5-1=12,5\)
vậy x = 12.5
\(\frac{x+1}{3}=\frac{9}{2}\)
\(\Leftrightarrow2\left(x+1\right)=3\times9\)
\(\Leftrightarrow2\left(x+1\right)=27\)
\(\Leftrightarrow x+1=\frac{27}{2}\)
\(\Leftrightarrow x=\frac{25}{2}\)
=\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+............+\frac{1}{18.19.20}\)
=\(\frac{2}{1.2.3.2}+\frac{2}{2.3.4.2}+............+\frac{2}{18.19.20.2}\)
=\(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}............+\frac{1}{18.19}-\frac{1}{19.20}\)
=\(\frac{1}{1.2}-\frac{1}{19.20}\)
=\(\frac{189}{380}\)
1/1.3+1/3.5+1/5.7+.......+1/2003.2005
= 1/2.(2/1.3+2/3.5+2/5.7+.......+2/2003.2005)
= 1/2.(1 -1/3 + 1/3-1/5+1/5-1/7 + ...+ 1/2003 - 1/2005)
= 1/2.(1-1/2005)
= 1/2. 2004/2005
= 1002/2005
Ta có:
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2003.2005}\)
\(\Rightarrow\frac{1}{2}\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2003.2004}\right)\)
\(\Rightarrow\frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2003}-\frac{1}{2005}\right)\)
\(\Rightarrow2\left(\frac{1}{1}-\frac{1}{2004}\right)=\frac{1}{2}.\frac{2003}{2004}=\frac{2003}{4008}\)
\(A=\frac{2^2-1}{2^2}.\frac{3^2-1}{3^2}....\frac{100^2-1}{100^2}\)
\(A=\frac{1.3}{2^2}.\frac{2.4}{3^2}....\frac{99.101}{100^2}\)
\(A=\frac{1.3.2.4...99.100}{2.2.3.3...100.100}\)
\(A=\frac{1.2...99}{2.3....100}.\frac{3.4...101}{2.3...100}\)
\(A=\frac{1}{100}.\frac{101}{2}\)
\(A=\frac{101}{200}\)
Sửa đề nha :
\(\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{2015\cdot2017}\)
\(=\frac{1}{2}\cdot\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2015}-\frac{1}{2017}\right)\)
\(=\frac{1}{2}\cdot\left(1-\frac{1}{2017}\right)\)
\(=\frac{1}{2}\cdot\frac{2016}{2017}=\frac{1008}{2017}\)
\(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{2016.2017}\)
\(=\frac{1}{2}\left[\left[\frac{1}{1}-\frac{1}{3}\right]+\left[\frac{1}{3}-\frac{1}{5}\right]+...+\left[\frac{1}{2016}-\frac{1}{2017}\right]\right]\)
= \(=\frac{1}{2}\left[1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2016}-\frac{1}{2017}\right]\)
\(=\frac{1}{2}.\left[1-\frac{1}{2017}\right]\)
= 1/2. 2016 / 2017 = 1008/2017
AI THẤY ĐÚNG ỦNG HỘ NHA