Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(-S=\left(2006^2-2005^2\right)+...+\left(2^2-1^2\right)\) làm số dương cho đỡ rối
\(-S=2006+2005+...+2+1=\frac{2006.2007}{2}=1003.2007\)
S=-1003.2007
\(S=2006^2-2005^2+2004^2-2003^2+....+2^2-1^2\)
\(=\left(2006-2005\right)\left(2006+2005\right)+\left(2004-2003\right)\left(2004+2003\right)+...\left(2-1\right)\left(2+1\right)\)
\(=2006+2005+2004+....+2+1\)
\(=\frac{2006\left(2006+1\right)}{2}=2013021\)
Bài 1 : \(A=2^{2001}+2^{2002}+2^{2003}+2^{2004}+2^{2005}+2^{2006}\)
\(=2^{2001}\left(1+2+2^2+2^3+2^4+2^5\right)\)
Ta có :
\(2^1\equiv2mod\left(10\right)\)
\(2^{10}\equiv4mod\left(10\right)\)
\(2^{100}\equiv4^{10}\equiv6mod\left(10\right)\)
\(2^{1000}\equiv6^{10}\equiv6mod\left(10\right)\)
\(2^{2000}\equiv6^2\equiv6mod\left(10\right)\)
\(\Rightarrow2^{2001}\equiv6.2\equiv2mod\left(10\right)\)
Mà : \(1+2+2^2+2^3+2^4+2^5\equiv3mod\left(10\right)\)
Vậy chữ số tận cùng của A là \(2\times3=6\)
Bài 2 : Đặt \(A=\left(x-1\right)\left(x-4\right)\left(x-5\right)\left(x-8\right)+2002\)
\(=\left(x-1\right)\left(x-8\right)\left(x-4\right)\left(x-5\right)+2002\)
\(=\left(x^2-9x+8\right)\left(x^2-9x+20\right)+2002\)
\(=\left(x^2-9x+14-6\right)\left(x^2-9x+14+6\right)+2002\)
\(=\left(x^2-9x+14\right)^2+1966\)
Vì \(\left(x^2-9x+14\right)^2\ge0\)
\(\Rightarrow\left(x^2-9x+14\right)^2+1966\ge1966\)
Vậy GTNN của A là 1966 .
Dấu bằng xảy ra khi \(x^2-9x+14=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=7\end{matrix}\right.\)
Hằng đẳng thức a2 - b2 = (a - b).(a + b) <=> (a - b).(a + b) = a2 - b2
a) \(\sqrt{3x-4}\) + \(\sqrt{4x+1}\) = \(-16x^2 - 8x +1\) với
ĐKXĐ :
- Vế trái \(x \ge \frac{4}{3}\)
- Vế phải : \(-16x^2 - 8x +1\) \(\ge 0\) \(\Leftrightarrow \) \(x \le \frac{\sqrt{2}-1}{4}\) hoặc \(x \le \frac{-\sqrt{2}-1}{4}\)
Hai điều kiện trái ngược nhau
Vậy phương trình vô nghiệm .
\(M=2006^2-2005^2+2004^2-2003^2+...+2^2-1^2\)
\(M=\left(2006-2005\right)\left(2006+2005\right)+\left(2004-2003\right)\left(2004+2003\right)+...+\left(2-1\right)\left(2+1\right)\)
\(M=2006+2005+2004+2003+...+1+2\)
Trở về bài toán lớp 5 :v
\(M=2013021\)
2013021