Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cả ượt đi và về là
100x2=200 m
số bước sư tử di hết quãng dường cả đi cả về là
200:2=100 bước
khi sư tử đi đc 100 bước thì báo đi đc số bước là
100x2:3=200/3 bươc
khi đó báo đi được số mét là
200/3 x 3=200m
tức là khi sư tử đi hết quãng đường đi về thì báo cũng đi hết
vậy 2 con về cùng nhau hòa
k nha mk làm xong trước đó
1. thả 1 hổ và 1 sư tử qua
2. thả hổ bên bờ kia
3.sư tử qua bền bờ kia
4.thả 2 hổ qua
5.thả 1 hổ bên bờ kia
6. 1 hổ kia qua sông
7. thả 2 sư tử qua
8. Thả 1 sư tử thay vào đó là 1 hổ
9. đi qua
10. thà 2 sư tử qua
11. lấy 1 hổ qua
12. thả 2 hổ qua
13.1 hổ qua kia rước con còn lại
xong
cho mik nha
đảm bảo đúng 10000000000000000000% lun ấy
a/
\(KD\perp AB\Rightarrow\widehat{CHB}=90^o\)
\(\widehat{AMB}=90^o\) (góc nội tiếp chắn nửa đường tròn)
=> M và H cùng nhìn Bc dưới 1 góc \(=90^o\) Nên M và H cùng nằm trên đường tròn đường kính AB nên B;M;H;C cùng nằm trên 1 đường tròn
b/
Ta có \(AB\perp KD\Rightarrow HK=HD\) (đường kính vuông góc với dây cung thì chia đôi dây cung)
Xét tam giác AKD có AH vừa là đường cao vừa là đường trung trực nên tg AKD là tg cân tại A => AK=AD
=> số đo cung AK = số đo cung AD (hai dây cung bằng nhau thì căng hai cung bằng nhau)
Ta có
số đo \(\widehat{KMA}=\frac{1}{2}\) số đo cung AK (góc nội tiếp đường tròn)
số đo \(\widehat{AKD}=\frac{1}{2}\) số đo cung AD (góc nội tiếp đường tròn)
Mà số đo cung AK = số đo cung AD (cmt)
\(\Rightarrow\widehat{KMA}=\widehat{AKD}\)
Xét tg AKC và tg AMK có
\(\widehat{KAM}\) chung
\(\widehat{AKD}=\widehat{AMK}\left(cmt\right)\)
=> tg AKC đồng dạng tg AMK (g.g.g) \(\Rightarrow\frac{AK}{AM}=\frac{AC}{AK}\Rightarrow AK^2=AC.AM\left(dpcm\right)\)
c/
Xét tg vuông AHC và tg vuông AMB có \(\widehat{MAB}\) chung => tg AHC đồng dạng tg AMB
\(\Rightarrow\frac{AH}{AM}=\frac{AC}{AB}\Rightarrow AH.AB=AC.AM=AK^2\)
\(\Rightarrow\frac{R}{2}.2R=AK^2=R^2\Rightarrow AK=R\)
Xét tg vuông AHK có
\(KH^2=AK^2-AH^2=R^2-\frac{R^2}{4}=\frac{3R^2}{4}\Rightarrow KH=\frac{R\sqrt{3}}{2}\)
\(KC=CH=\frac{KH}{2}=\frac{R\sqrt{3}}{4}\)
Xét tg vuông ACH có
\(AC^2=CH^2+AH^2=\frac{3R^2}{16}+\frac{R^2}{4}=\frac{7R^2}{16}\Rightarrow AC=\frac{R\sqrt{7}}{4}\)
Mà \(AK^2=AC.AM\Rightarrow AM=\frac{AK^2}{AC}=\frac{R^2}{\frac{R\sqrt{7}}{4}}=\frac{4R\sqrt{7}}{7}\)
Ta có \(CM=AM-AC=\frac{4R\sqrt{7}}{7}-\frac{R\sqrt{7}}{4}=\frac{9R\sqrt{7}}{28}\)
Xét tg vuông MEC và tg vuông AHC có \(\widehat{ECM}=\widehat{ACH}\) (góc đối đỉnh) => tg MEC đồng dạng tg AHC)
\(\Rightarrow\frac{CE}{AC}=\frac{MC}{CH}\Rightarrow CE=\frac{AC.MC}{CH}=\frac{\frac{R\sqrt{7}}{4}.\frac{9R\sqrt{7}}{28}}{\frac{R\sqrt{3}}{4}}=\frac{3R\sqrt{3}}{4}\)
d/ Giao đường tròn ngoại tiếp tg ACE là gia 3 đường trung trực
Ta có A cố định, K cố định nên đường trung trực của
hệ: \(\left\{{}\begin{matrix}\dfrac{63}{x+y}+\dfrac{30}{x-y}=5\\\dfrac{42}{x+y}+\dfrac{45}{x-y}=5\end{matrix}\right.\) giải hệ tìm x và y
Trong đó x là vận tốc của ca nô
y là vận tốc của dòng nước
xuôi dòng x+y ngược dòng x-y