Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Phương trình mặt phẳng trung trực của AB là
Phương trình mặt phẳng trung trực của AC là
Chọn x = 1
Phương trình đường thẳng giao tuyến của ( α ) và ( β ) là
Vì MA=MB=MC
Đáp án C
Ta có: M ∈ ( P )
O M 2 = 6 < R 2 = 9 ⇒ M nằm trong mặt cầu ⇒ (P) cắt mặt cầu thành 1 hình tròn (C)
Gọi H là tâm hình tròn (C)
Để AB nhỏ nhất thì A B ⊥ H M
Vì
O là tâm mặt cầu và O (0; 0; 0)
Phương trình OH: x = t y = t z = t
là một vecto chỉ phương của AB
Chọn là vecto chỉ phương của AB
Thì
Đáp án C
có tâm I(4;3;3) bán kính R =4
Gọi phương trình đường thẳng d có dạng
Khoảng cách từ tâm I đến d là
Ta có
Khi đó
Đáp án B.
Phương pháp: Tính độ dài đoạn thẳng IM với I là tâm mặt cầu.
Tham số hóa tọa độ điểm M, sau đó dựa vào độ dài IM để tìm điểm M.
Cách giải :
Mặt cầu (S) có tâm I(1;2;-3) bán kính R = 3 3
Đặt MA=MB+MC=a. Tam giác MAB đều => AB =a
Tam giác MBC vuông tại M => BC= a 2
Tam giác MCA có
Xét tam giác ABC có
=> Tam giác ABC ngoại tiếp đường tròn nhỏ có đường kính AC
Xét tam giác vuông IAM có: