K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2021

Vì số dư luôn nhỏ hơn số bị chia nên khi chia a cho 6 ; 7 và 8 ta có các số dư lớn nhất lần lượt là 5 ; 6 và 7 

Khi đó 5 + 6 + 7 = 18

Vì vậy ta có \(\hept{\begin{cases}a-5⋮6\\a-6⋮7\\a-7⋮8\end{cases}}\)\(\Rightarrow\hept{\begin{cases}\left(a-5\right)+6⋮6\\\left(a-6\right)+7⋮7\\\left(a-7\right)+8⋮8\end{cases}}\)\(\Rightarrow\hept{\begin{cases}a+1⋮6\\a+1⋮7\\a+1⋮8\end{cases}}\)=> a + 1 ∈ BC( 6 ; 7 ; 8 )

Ta có : 6 = 2 . 3 ; 7 = 7 ; 8 = 23

=> BCNN( 6 , 7 , 8 ) = 23 . 3 . 7 = 168

=> a + 1 ∈ { 0 ; 168 ; 336 ; 504 ; ... } => a ∈ { 167 ; 335 ; 503 ; ... } ( do a ∈ N

=> a chia 28 dư 1

15 tháng 10 2021

Tham khảo câu trả lời của mình tại

Câu hỏi của Nguyễn Hoàng Quỳnh - Toán lớp 7 - Học trực tuyến OLM

2 tháng 3 2016

Chia cho 45 dư 32

2 tháng 3 2016

nhờ trình bày với

28 tháng 8 2015

Số tự nhiên là A, ta có: 
A = 7m + 5 
A = 13n + 4 
=> 
A + 9 = 7m + 14 = 7(m + 2) 
A + 9 = 13n + 13 = 13(n+1) 
vậy A + 9 là bội số chung của 7 và 13 => A + 9 = k.7.13 = 91k 
=> A = 91k - 9 = 91(k-1) + 82 
vậy A chia cho 91 dư -9 (hoặc 82)

12 tháng 4 2019

Số tự nhiên là A, ta có: 

A = 7m + 5 

A = 13n + 4 

=> A + 9 = 7m + 14 = 7(m + 2) 

=> A + 9 = 13n + 13 = 13(n+1) 

vậy A + 9 là bội số chung của 7 và 13 => A + 9 = k.7.13 = 91k 

=> A = 91k - 9 = 91(k-1) + 82 

vậy A chia cho 91 dư -9 (hoặc 82)

gọi số tự nhiên là a , ta có :

A = 4a + 3

   = 17b + 9

   = 19c + 3

Mặt khác A + 25 = 4a  + 3 + 25 = 4a + 28 = 4( a +  7 )

                           = 17b + 9 +  25 = 17b + 34 = 17 ( b + 2 )

                           = 19c + 13 + 25 = 19c + 38 = 19( c + 3 )

Như vậy A + 25 đồng thời chia hết cho 4 ; 17 ; 19

mà ( 4 : 17 : 19 ) = 1

=> A + 25  chia hết cho 1292

=> A + 25 = 1292k ( k = 1 ; 2 ; 3 ; ......... )

=> A = 1292k - 25  = 1292k - 1292 + 1267 = 1292 ( k -1 ) + 1267

Do 1267 < 1292 nên 1267 là số trong phép chia số đã cho A là 1292

23 tháng 8 2015

Cho a là số tự nhiênchia 6 dư 2 và b là số tự nhiên chia 6 dư 3. Chứng minh axb chia hết cho 6