K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

bai 1: cho tam giác ABC có góc a bằng 120 độ, phân giác Ad. Kẻ DH vuông góc với AD, DE vung góc với AC. Trên các đoạn EB và FC lấy hai điểm I và K sao cho EI = FKa) chứng minh tam giác DEF là tam giác đềub) chứng minh tam giác DIK là tam giác cânc) Từ C kẻ đường thẳng song song với AD cắt BA tại M. Chứng minh tam giác MAC là tam giác đều. Tính AD biết CM=m và CF=nbai 2: cho  góc nhọn xOy...
Đọc tiếp

bai 1: cho tam giác ABC có góc a bằng 120 độ, phân giác Ad. Kẻ DH vuông góc với AD, DE vung góc với AC. Trên các đoạn EB và FC lấy hai điểm I và K sao cho EI = FK

a) chứng minh tam giác DEF là tam giác đều

b) chứng minh tam giác DIK là tam giác cân

c) Từ C kẻ đường thẳng song song với AD cắt BA tại M. Chứng minh tam giác MAC là tam giác đều. Tính AD biết CM=m và CF=n

bai 2: cho  góc nhọn xOy . Điểm H nằm trên phân giác của góc xOy. Từ H dựng các dừong vuông góc xuống hai cạnh ox và oy( A thuộc Ox, B thuộc Oy)

a) chung minh tam giác HAB là tam giác cân

b) gọi D là hình chiếu của điểm A trên Oy, C là giao điểm của AD với OH . Chứng minh BC vuông góc với ox

c) khi góc xOy bằng 60 độ, OH = 4cm tính độ dài OA

giải giúp mình đi mình đang cần gấp

 

1

Bài 2: 

a: Xét ΔOHA vuông tại A và ΔOHB vuông tại B có 

OH chung

\(\widehat{AOH}=\widehat{BOH}\)

Do đó: ΔOHA=ΔOHB

Suy ra: HA=HB

hay ΔHAB cân tại H

b: Xét ΔOAB có

OH là đường cao

AD là đường cao

OH cắt AD tại C

Do đó: C là trực tâm của ΔOAB

Suy ra: BC\(\perp\)Ox

c: \(\widehat{HOA}=\dfrac{60^0}{2}=30^0\)

Xét ΔOHA vuông tại A có 

\(\cos HOA=\dfrac{OA}{OH}\)

\(\Leftrightarrow OA=\dfrac{\sqrt{3}}{2}\cdot4=2\sqrt{3}\left(cm\right)\)

Sửa đề: AD=AC

a: Xét ΔACE và ΔADE có 

AC=AD

\(\widehat{CAE}=\widehat{DAE}\)

AE chung

DO đó: ΔACE=ΔADE

Suy ra: \(\widehat{CAE}=\widehat{DAE}\)

hay AE là phân giác của góc CAB

b: Ta có: AC=AD

EC=ED

DO đó: AE là đường trung trực của CD

c: ta có: AE là đường trung trực của CD

nên AE\(\perp\)CD tại I

=>ΔAID vuông tại I

=>\(\widehat{ADI}< 90^0\)

=>\(\widehat{CDB}>90^0\)(Do góc ADI và góc CDB là hai góc kề bù)

Xét ΔCDB có \(\widehat{CDB}>90^0\)

nên BC là cạnh lớn nhất

=>BC>CD

1: Xét tứ giác AEHF có \(\widehat{AEH}+\widehat{AFH}=180^0\)

nên AEHF là tứ giác nội tiếp

2: Xét ΔCDA vuông tại D và ΔCEB vuông tại E có

\(\widehat{DCA}\) chung

Do đó: ΔCDA\(\sim\)ΔCEB

Suy ra: CD/CE=CA/CB

hay \(CD\cdot CB=CA\cdot CE\)

25 tháng 6 2019

a, Xét tứ giác AEMO có:

\(\widehat{OME}=90^0,\widehat{OAE}=90^0\Leftrightarrow\widehat{OME}+\widehat{OAE}=180^0\)

mà 2 góc này ở vị trí đối nhau nên tứ giác AEOM nt đường tròn đk EO

b, Theo tính chất tiếp tuyến ta thấy:

EO là tia phân giác của MOA

OF là tia phân giác của MOB

mà MOB và MOA là hai góc kề bù nên EOF =90

c,ta thấy

OMEA nt đường tròn đk EO nên MAB=FEO(cùng nhìn cạnh MO)

xét \(\Delta ABM\)\(\Delta OEF\)

\(\widehat{MAB}=\widehat{OEF}\left(cmt\right)\)

\(\widehat{AMB}=\widehat{EOF}\left(=90^0\right)\)

\(\Rightarrow\Delta ABM\sim\Delta EFO\)\(\Rightarrow dpcm\)