Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Giả sử ∆ABC vuông tại A. Gọi O là trung điểm của BC
=> OA = OB = OC => O là tâm đường tròn đi qua A,B,C
b, Ta có OA = OB = OC => OA = 1 2 BC => ∆ABC vuông tại A
Hình a) + b)
a) Xét tam giác ABC vuông tại A. Gọi O là trung điểm của BC.
Ta có AO là đường trung tuyến ứng với cạnh huyền nên OA = OB = OC.
=> O là tâm của đường tròn đi qua A, B, C.
Vậy tâm của đường tròn ngoại tiếp ΔABC là trung điểm của cạnh huyền BC. (đpcm)
b) Xét tam giác ABC nội tiếp đường tròn (O) đường kính BC, ta có:
OA = OB = OC
Tam giác ABC có đường trung tuyến AO bằng nửa cạnh BC nên suy ra tam giác ABC vuông tại A. (đpcm)
a) Xét tam giác ABC vuông tại A.
Gọi O là trung điểm của cạnh huyền BC, ta có:
OA=OB=OC.
Vậy O chính là tâm cuả đường tròn ngoại tiếp tam giác ABC
b) Xét tam giác ABC nội tiếp đường tròn (O) đường kính BC.
Ta có OA=OB=OC(=R)
suy ra OA=12BC, do đó tam giác ABC vuông tại A
Nhận xét: Định lý trong bài tập này thường được dùng để giải nhiều bài tập về nhận biết tam giác vuông.
a) Xét tam giác ABC vuông tại A.
Gọi O là trung điểm của cạnh huyền BC, ta có:
OA=OB=OC.
Vậy O chính là tâm cuả đường tròn ngoại tiếp tam giác ABC
b) Xét tam giác ABC nội tiếp đường tròn (O) đường kính BC.
Ta có OA=OB=OC(=R)
suy ra OA = 1/2BC , do đó tam giác ABC vuông tại A
Nhận xét: Định lý trong bài tập này thường được dùng để giải nhiều bài tập về nhận biết tam giác vuông.
+ ) Ta thấy ngay hai tam giác vuông AHC và ANC có chung cạnh huyền AC nên A, H, N, C cùng thuộc đường tròn đường kính AC.
\(\Rightarrow\widehat{HNA}=\widehat{HCA}\) (Hai góc nội tiếp cùng chắn cung AH)
Ta thấy ngay hai tam giác vuông AMB và AHB có chung cạnh huyền AB nên A, M, H, B cùng thuộc đường tròn đường kính AB.
\(\Rightarrow\widehat{HMN}=\widehat{ABH}\) (Góc ngoài tại đỉnh đối diện bằng góc trong tại đỉnh)
Vậy nên \(\Delta ABC\sim\Delta HMN\left(g-g\right)\)
+) Ta có \(\widehat{ADC}=\widehat{ABC}\) (Hai góc nội tiếp cùng chắn cung AC)
Mà \(\Delta ABC\sim\Delta HMN\Rightarrow\widehat{ABC}=\widehat{HMN}\)
nên \(\widehat{ADC}=\widehat{HMN}\)
Chúng lại ở vị trí so le trong nên DC // HM
Ta có \(DC\perp AC\Rightarrow HM\perp AC\)
Gọi J là trung điểm AB
Ta có ngay IJ là đường trung bình tam giác ABC nên IJ // AC
Vậy nên \(HM\perp IJ\)
Mà J là tâm đường tròn ngoại tiếp tứ giác AMHB nên IJ vuông góc cung HM tại trung điểm HM hay IJ là trung trực của HM.
Vậy thì IM = IH.
Tương tự ta có IM = IH = IN hay I là tâm đường tròn ngoại tiếp tam giác HMN.
- Nối (1) - (5)
- Nối (2) - (6)
- Nối (3) - (4)