K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2017

Do x> 0 nên 2x >0  và  3 x > 0 .

Áp dụng bất đẳng thức Cô- si cho 2 số dương:   2 x ; 3 x

f x = 2 x + 3 x ≥ 2 . 2 x . 3 x = 2 6

Dấu “=” xảy ra khi 2 x = 3 x ⇔ x = 3 2 = 6 2 .

9 tháng 7 2017

Với mọi x, y ta có:

       x - y 2 ≥ 0 ⇔ x 2 - 2 x y + y 2 ≥ 0 ⇔ x 2 + y 2 ≥ 2 x y ⇔ x 2 + y 2 + 2 x y ≥ 4 x y ⇔ x + y 2 ≥ 4 x y  

⇔ x + y 4 4 ≥ x y ⇔ x y ≤ x + y 2 4 = S 2 4

 Giá trị lớn nhất của xy là S 2 4 . Dấu "=" xảy ra khi x = y.

Chọn D.

17 tháng 8 2019

19 tháng 11 2018

Với x > 1  thì x -1 >0 .

Áp dụng bất đẳng thức Cô- si ta có:

f x = x 2 + 2 x - 1 = x - 1 2 + 2 x - 1 + 1 2 ≥ 2 . x - 1 2 . 2 x - 1 + 1 2 ⇔ f x ≥ 2 + 1 2 = 5 2

Giá trị nhỏ nhất của hàm số  f x = x 2 + 2 x - 1   v ớ i   x > 1   là  5 2

Dấu “=’ xảy  ra khi x - 1 2 = 2 x - 1 ⇔ x - 1 2 = 4 ⇔ x = 3 > 1

26 tháng 7 2018

Do x > 0 nên  x 2 > 0 ; 3 x 2 > 0

Áp dụng bất đẳng thức Cô – si cho 3 số dương x 2 ; x 2 ; 3 x 2  ta được:

f x = x + 3 x 2 = x 2 + x 2 + 3 x 2 ≥ 3 . x 2 . x 2 . 3 x 2 3 = 3 . 3 4 3

NV
26 tháng 2 2023

\(x^2-2x-3\) có 2 nghiệm \(x=-1;x=3\) và hệ số \(a=1>0\) nên nhận giá trị dương khi và chỉ khi \(x< -1\) hoặc \(x>3\)

29 tháng 1 2017

Ta có  f x ≥ 0 ⇔ x + 3 m ≥ 2 ⇔ x ≥ 2 - 3 m

f x ≥ 0  với mọi x ∈ [ 1 ; + ∞ ) ⇔ [ 1 ; + ∞ ) ⊂ [ 2 - 3 m ; + ∞ ) ⇔ 2 - 3 m ≤ 1 ⇔ m ≥ 1 3 .

Chọn C.

NV
4 tháng 3 2021

Gọi G là trọng tâm tam giác\(\Rightarrow\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\)

Đặt \(P=MA^2+MB^2+MC^2=\left(\overrightarrow{MG}+\overrightarrow{GA}\right)^2+\left(\overrightarrow{MG}+\overrightarrow{GB}\right)^2+\left(\overrightarrow{MG}+\overrightarrow{GC}\right)^2\)

\(=3MG^2+GA^2+GB^2+GC^2+2\overrightarrow{MG}\left(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\right)\)

\(=3MG^2+GA^2+GB^2+GC^2\)

Do  \(GA^2+GB^2+GC^2\) ko đổi nên \(P_{min}\) khi \(MG_{min}\Leftrightarrow M\) là chân đường vuông góc hạ từ G xuống BC

\(\Rightarrow\dfrac{CM}{BC}=\dfrac{2}{3}\Rightarrow\dfrac{BM}{BC}=\dfrac{1}{3}\)

\(\Rightarrow\dfrac{S_{ABM}}{S_{ABC}}=\dfrac{1}{3}\)