Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi thời gian vòi 1 chảy một mình đẩy bể là x ( x<4)
Gọi thời gian vòi 2 chảy một mình đầy bể là y (y<4)
Trong một giờ:
-Vòi 1 chảy một mình được \(\dfrac{1}{x}\)(bể)
-Vòi 2 chảy được \(\dfrac{1}{y}\)(bể)
-Cả hai vòi chảy được \(\dfrac{1}{4}\)(bể)
+Ta có PT: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{9}\) (1)
Vì nếu để vòi 1 chảy một mình trong 30 phút rồi khóa lại và mở vòi hai trong 20 phút thì cả hai vòi chảy được 1/9 bể nên có PT:
\(\dfrac{1}{2}x+\dfrac{1}{3}y=\dfrac{1}{9}\)
⇔\(\dfrac{x}{2}+\dfrac{y}{3}=\dfrac{1}{9}\) (2)
Từ (1) và (2) ta có HPT: \(\left\{{}\begin{matrix}\dfrac{x}{1}+\dfrac{y}{1}=\dfrac{1}{4}\\\dfrac{x}{2}+\dfrac{y}{3}=\dfrac{1}{9}\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=6\\y=12\end{matrix}\right.\)(TM)
Vậy vòi 1 chảy một mình trong 6 giờ thì đẩy bể
Vậy vòi 2 chảy một mình trong 12 giờ thì đẩy bể
Gọi x(giờ) là thời gian vòi 1 chảy một mình đầy bể
y(giờ) là thời gian vòi 2 chảy một mình đầy bể
(Điều kiện: x>3; y>3)
Trong 1 giờ, vòi 1 chảy được: \(\dfrac{1}{x}\)(bể)
Trong 1 giờ, vòi 2 chảy được: \(\dfrac{1}{y}\)(bể)
Trong 1 giờ, hai vòi chảy được: \(\dfrac{1}{3}\)(bể)
Do đó, ta có phương trình: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{3}\)(1)
Vì khi mở vòi 1 trong 20' và mở vòi 2 trong 30' thì cả hai vòi chảy được 1/8 bể nên ta có phương trình:
\(\dfrac{1}{3x}+\dfrac{1}{2y}=\dfrac{1}{8}\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{3}\\\dfrac{1}{3}\cdot\dfrac{1}{x}+\dfrac{1}{2}\cdot\dfrac{1}{y}=\dfrac{1}{8}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{3}\cdot\dfrac{1}{x}+\dfrac{1}{3}\cdot\dfrac{1}{y}=\dfrac{1}{9}\\\dfrac{1}{3}\cdot\dfrac{1}{x}+\dfrac{1}{2}\cdot\dfrac{1}{y}=\dfrac{1}{8}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-1}{6}\cdot\dfrac{1}{y}=\dfrac{-1}{72}\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{y}=\dfrac{1}{12}\\\dfrac{1}{x}+\dfrac{1}{12}=\dfrac{1}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{1}{3}-\dfrac{1}{12}=\dfrac{1}{4}\\\dfrac{1}{y}=\dfrac{1}{12}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=12\end{matrix}\right.\)(thỏa ĐK)
Vậy: Vòi 1 cần 4 giờ để chảy một mình đầy bể
Vòi 2 cần 12 giờ để chảy một mình đầy bể
Gọi thời gian chảy đầy bể vòi 1 vòi 2 lần lượt là a ; b ( a ; b > 0 )
Theo bài ra ta có hệ \(\left\{{}\begin{matrix}\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{2}{3}\\\dfrac{1}{4a}+\dfrac{1}{3b}=\dfrac{1}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{a}=\dfrac{4}{15}\\\dfrac{1}{b}=\dfrac{2}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{15}{4}\\b=\dfrac{5}{2}\end{matrix}\right.\)(tm)
Gọi vòi một chảy đầy bể là x ( giờ )
vòi hai chảy đầy bể là y ( giờ )
Trong 1 giờ vòi 1 chảy được \(\frac{1}{x}\)( bể )
Trong 1 giờ vòi 2 chảy được \(\frac{1}{y}\)( bể )
Trong 3 giờ 2 vòi chảy đầy bể: \(3\left(\frac{1}{x}+\frac{1}{y}\right)=1\left(1\right)\)
Vòi 1 chảy \(\frac{1}{3}\)giờ rồi khóa lại và mở vòi 2 chảy tiếp trong \(\frac{1}{2}\)giờ thì đầy bể
Nên ta có: \(\frac{1}{3}.\frac{1}{x}+\frac{1}{2}.\frac{1}{y}=\frac{1}{8}\left(2\right)\)
Từ ( 1 ) và ( 2 ) ta lập được hệ phương trình:
\(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}=\frac{1}{3}\\\frac{1}{3}.\frac{1}{x}+\frac{1}{2}.\frac{1}{y}=\frac{1}{8}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x+y=\frac{1}{3}\\\frac{x}{3}+\frac{y}{2}=\frac{1}{8}\end{cases}\Leftrightarrow\hept{\begin{cases}8x+8y=\frac{8}{3}\\8x+12y=3\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}4y=\frac{1}{3}\\x=\frac{1}{3}-y\end{cases}\Leftrightarrow\hept{\begin{cases}y=\frac{1}{12}\\x=\frac{1}{3}-\frac{1}{12}\end{cases}}}\)\(\Leftrightarrow\hept{\begin{cases}y=\frac{1}{12}\\x=\frac{1}{4}\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{1}{x}=\frac{1}{4}\\\frac{1}{y}=\frac{1}{12}\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}x=4\\y=12\end{cases}}\)
Vậy vòi 1 chảy 1 mình trong 4 giờ sẽ đầy bể
vòi 2 chảy 1 mình trong 12 giờ sẽ đầy bể
ai giúp mình với đc không(30p)
Lời giải:
Đổi 20 phút = $\frac{1}{3}$ giờ; 30 phút = $\frac{1}{2}$ giờ
Giả sử vòi 1 và vòi 2 chảy 1 mình thì sau tương ứng $a,b$ giờ thì đầy bể
Khi đó, trong 1 giờ thì:
Vòi 1 chảy $\frac{1}{a}$ bể; vòi 2 chảy $\frac{1}{b}$ bể
Theo bài ra ta có: \(\left\{\begin{matrix} \frac{3}{a}+\frac{3}{b}=1\\ \frac{1}{3a}+\frac{1}{2b}=\frac{1}{8}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} \frac{1}{a}=\frac{1}{4}\\ \frac{1}{b}=\frac{1}{12}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a=4\\ b=12\end{matrix}\right.\)
Vậy......