Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi thời gian hai vòi chảy một mình đầy bể là `a,b (h) (a,b>0)`.
- Sau 8h, cả 2 vòi cùng chảy thì đầy bể.
`=> 8/x+8/y=1`
- Trong 1h, lượng nước vòi 2 chảy bằng `3/4` lượng nước vòi 1:
`3/4 . 1/x = 1/y`
Ta có hệ: \(\left\{{}\begin{matrix}\dfrac{8}{x}+\dfrac{8}{y}=1\\\dfrac{3}{4}.\dfrac{1}{x}=\dfrac{1}{y}\end{matrix}\right.\)
Giải hệ ta được: `x=14`
Vậy vòi thứ nhất chảy một mình hết 14h thì đầy bể.
Gọi x(giờ) là thời gian vòi 1 chảy một mình đầy bể
y(giờ) là thời gian vòi 2 chảy một mình đầy bể
(Điều kiện: x>16; y>16)
Trong 1 giờ, vòi 1 chảy được: \(\dfrac{1}{x}\)(bể)
Trong 1 giờ, vòi 2 chảy được: \(\dfrac{1}{y}\)(bể)
Trong 1 giờ, hai vòi chảy được: \(\dfrac{1}{16}\)(bể)
Do đó, ta có phương trình: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{16}\)(1)
Vì nếu vòi 1 chảy trong 3 giờ và vòi 2 chảy trong 6 giờ thì cả hai vòi chảy được 25% bể nên ta có phương trình:
\(\dfrac{3}{x}+\dfrac{6}{y}=\dfrac{1}{4}\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{16}\\\dfrac{3}{x}+\dfrac{6}{y}=\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{x}+\dfrac{3}{y}=\dfrac{3}{16}\\\dfrac{3}{x}+\dfrac{6}{y}=\dfrac{1}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-3}{y}=\dfrac{-1}{16}\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{16}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=48\\\dfrac{1}{x}=\dfrac{1}{16}-\dfrac{1}{48}=\dfrac{1}{24}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=24\\y=48\end{matrix}\right.\)(thỏa ĐK)
Vậy: Vòi 1 cần 24 giờ để chảy một mình đầy bể
Vòi 2 cần 48 giờ để chảy một mình đầy bể