Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
• Vì a, b, c đều dương và a + b + c = 2
nên \(0< a,b,c< 2\)
• Theo gt, ta có:
\(\Leftrightarrow\left\{{}\begin{matrix}b+c=2-a\\\left(b+c\right)^2-2bc=2-a^2\end{matrix}\right.\)
\(\Rightarrow\left(2-a\right)^2-2+a^2=2bc\)
\(\Rightarrow bc=\dfrac{\left(4-4a+a^2\right)-2+a^2}{2}=\dfrac{2a^2-4a+2}{2}=\left(a-1\right)^2\)
\(\Rightarrow b^2c^2=\left(a-1\right)^4\)
• Ta lại có: \(a\sqrt{\dfrac{\left(1+b^2\right)\left(1+c^2\right)}{1+a^2}}=a\sqrt{\dfrac{1+b^2+c^2+b^2c^2}{1+a^2}}\)
\(=a\sqrt{\dfrac{3-a^2+\left(a-1\right)^4}{1+a^2}}=a\sqrt{\dfrac{a^4-4a^3+5a^2-4a-4}{1+a^2}}\)
\(=a\sqrt{\dfrac{\left(1+a^2\right)\left(a-2\right)^2}{1+a^2}}=a\left(2-a\right)\)
• Tương tự, ta cũng có: \(b\sqrt{\dfrac{\left(1+a^2\right)\left(1+c^2\right)}{1+b^2}}=b\left(2-b\right)\)
\(c\sqrt{\dfrac{\left(1+b^2\right)\left(1+a^2\right)}{1+c^2}}=c\left(2-c\right)\)
• Suy ra \(a\sqrt{\dfrac{\left(1+a^2\right)\left(a-2\right)^2}{1+a^2}}+b\sqrt{\dfrac{\left(1+a^2\right)\left(1+c^2\right)}{1+b^2}}+c\sqrt{\dfrac{\left(1+b^2\right)\left(1+a^2\right)}{1+c^2}}\)
\(=2\left(a+b+c\right)-\left(a^2+b^2+c^2\right)=2\left(đpcm\right)\)
Áp dụng BĐT AM-GM: \(\dfrac{1}{2}\sqrt{\left(a+3b\right)\left(b+3a\right)}\le\dfrac{1}{4}\left(4a+4b\right)=a+b\)
Ta chứng minh: \(3\left(a+b\right)^2+4ab\ge2\left(a+b\right)\)
hay \(3\left(a+b\right)^2+4ab\ge2\left(a+b\right)\left(\sqrt{a}+\sqrt{b}\right)^2\)
\(\Leftrightarrow\left(a+b-2\sqrt{ab}\right)^2\ge0\)( đúng)
Dấu = xảy ra khi \(a=b=\dfrac{1}{4}\)
Bài 2:
a: \(\Leftrightarrow\left\{{}\begin{matrix}2-x+y-3x-3y=5\\3x-3y+5x+5y=-2\end{matrix}\right.\)
=>-4x-2y=3 và 8x+2y=-2
=>x=1/4; y=-2
b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{y-1}=1\\\dfrac{1}{x-2}+\dfrac{1}{y-1}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y-1=5\\\dfrac{1}{x-2}=1-\dfrac{1}{5}=\dfrac{4}{5}\end{matrix}\right.\)
=>y=6 và x-2=5/4
=>x=13/4; y=6
c: =>x+y=24 và 3x+y=78
=>-2x=-54 và x+y=24
=>x=27; y=-3
d: \(\Leftrightarrow\left\{{}\begin{matrix}2\sqrt{x-1}-6\sqrt{y+2}=4\\2\sqrt{x-1}+5\sqrt{y+2}=15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-11\sqrt{y+2}=-11\\\sqrt{x-1}=2+3\cdot1=5\end{matrix}\right.\)
=>y+2=1 và x-1=25
=>x=26; y=-1
\(\Leftrightarrow y=\dfrac{\sqrt{c-2}}{c}+\dfrac{\sqrt{a-3}}{a}+\dfrac{\sqrt{b-4}}{b}\)
Ta có: \(\dfrac{\sqrt{c-2}}{c}\le\dfrac{1}{2\sqrt{2}}\Leftrightarrow\left(\sqrt{c-2}-\sqrt{2}\right)^2\ge0\) ( Luôn đúng)
Tương tự: \(\dfrac{\sqrt{a-3}}{a}\le\dfrac{1}{2\sqrt{3}};\dfrac{\sqrt{b-4}}{b}\le\dfrac{1}{4}\)
\(\Rightarrow y\le\dfrac{1}{2\sqrt{2}}+\dfrac{1}{2\sqrt{3}}+\dfrac{1}{4}\) và dấu ''='' xảy ra khi c = 4; a = 6; b = 8
3a)\(\left\{{}\begin{matrix}\dfrac{1}{x-2}+\dfrac{1}{2y-1}=2\\\dfrac{2}{x-2}-\dfrac{3}{2y-1}=1\end{matrix}\right.\) (ĐK: x≠2;y≠\(\dfrac{1}{2}\))
Đặt \(\dfrac{1}{x-2}=a;\dfrac{1}{2y-1}=b\) (ĐK: a>0; b>0)
Hệ phương trình đã cho trở thành
\(\left\{{}\begin{matrix}a+b=2\\2a-3b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2-b\\2\left(2-b\right)-3b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2-b\\4-2b-3b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2-b\\b=\dfrac{3}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{7}{5}\left(TM\text{Đ}K\right)\\b=\dfrac{3}{5}\left(TM\text{Đ}K\right)\end{matrix}\right.\) Khi đó \(\left\{{}\begin{matrix}\dfrac{1}{x-2}=\dfrac{7}{5}\\\dfrac{1}{2y-1}=\dfrac{3}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7\left(x-2\right)=5\\3\left(2y-1\right)=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7x-14=5\\6y-3=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{19}{7}\left(TM\text{Đ}K\right)\\y=\dfrac{4}{3}\left(TM\text{Đ}K\right)\end{matrix}\right.\) Vậy hệ phương trình đã cho có nghiệm duy nhất (x;y)=\(\left(\dfrac{19}{7};\dfrac{4}{3}\right)\)
b) Bạn làm tương tự như câu a kết quả là (x;y)=\(\left(\dfrac{12}{5};\dfrac{-14}{5}\right)\)
c)\(\left\{{}\begin{matrix}3\sqrt{x-1}+2\sqrt{y}=13\\2\sqrt{x-1}-\sqrt{y}=4\end{matrix}\right.\)(ĐK: x≥1;y≥0)
\(\Leftrightarrow\left\{{}\begin{matrix}3\sqrt{x-1}+2\sqrt{y}=13\\\sqrt{y}=2\sqrt{x-1}-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3\sqrt{x-1}+4\sqrt{x-1}=13\\\sqrt{y}=2\sqrt{x-1}-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7\sqrt{x-1}=13\\\sqrt{y}=2\sqrt{x-1}-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}49\left(x-1\right)=169\\\sqrt{y}=2\sqrt{x-1}-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}49x-49=169\\\sqrt{y}=2\sqrt{x-1}-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{218}{49}\\y=\dfrac{4}{49}\end{matrix}\right.\left(TM\text{Đ}K\right)\)
Bài 4:
Theo đề, ta có hệ:
\(\left\{{}\begin{matrix}3\left(3a-2\right)-2\left(2b+1\right)=30\\3\left(a+2\right)+2\left(3b-1\right)=-20\end{matrix}\right.\)
=>9a-6-4b-2=30 và 3a+6+6b-2=-20
=>9a-4b=38 và 3a+6b=-20+2-6=-24
=>a=2; b=-5
\(\dfrac{1}{a-b}-\dfrac{1}{b}=a+b+\dfrac{a}{b}+\dfrac{b}{a}+1\)
\(\Leftrightarrow1=\left(a-b\right)\left(a+b+\dfrac{a}{b}+\dfrac{b}{a}+\dfrac{1}{b}+1\right)\circledast\)
VP của \(\circledast\Leftrightarrow a^2+ab+\dfrac{a^2}{b}+b+\dfrac{a}{b}+a-ab-b^2-a-\dfrac{b^2}{a}-1-b=a^2-b^2+\dfrac{a^2}{b}-\dfrac{b^2}{a}+\dfrac{a}{b}-1\)
Do : \(a^2=2;b^3=2;\dfrac{a^2}{b}=\dfrac{2}{b}=b^2;\dfrac{a}{b}=\dfrac{b^2}{a}\)
\(\Rightarrow2-\dfrac{2}{b}+\dfrac{2}{b}-\dfrac{a}{b}+\dfrac{a}{b}-1=1=VT\)
=> đpcm
Ta có:
\(4\le\left(\sqrt{a}+1\right)\left(\sqrt{b}+1\right)=\sqrt{ab}+\sqrt{a}+\sqrt{b}+1\le\dfrac{a+b}{2}+\dfrac{a+1}{2}+\dfrac{b+1}{2}+1\)
\(=a+b+2\)
\(\Leftrightarrow a+b\ge2\)
\(\dfrac{a^2}{b}+\dfrac{b^2}{a}\ge\dfrac{\left(a+b\right)^2}{a+b}=a+b\ge2\)
Dấu \(=\) xảy ra khi \(a=b=1\).