Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có tính chất: Hiệu của một số với tổng các chữ số của nó chia hết cho 9
( xem cách chứng minh tại link Câu hỏi của Nguyễn Phương Chi - Toán lớp 6 - Học toán với OnlineMath )
Do đó ta có:
\(A-S\left(A\right)⋮9\)
\(S\left(A\right)-S\left(S\left(A\right)\right)⋮9\)
\(S\left(S\left(A\right)\right)-S\left(S\left(S\left(A\right)\right)\right)⋮9\)
=> Cộng lại và triệt tiêu ta có: \(A-S\left(S\left(S\left(A\right)\right)\right)⋮9\)(1)
Ta có: \(A=2^{100}=2.2^{99}=2.8^{33}\)=> Số chữ số của A < 34
=> \(S\left(A\right)< 34.9=306\)
=> \(S\left(S\left(A\right)\right)< 3.9=27\)
=> \(S\left(S\left(S\left(A\right)\right)\right)< 2.9=18\) (2)
Mặt khác \(A=2^{100}=2.2^{99}=2.8^{33}\equiv2\left(-1\right)^{33}\equiv-2\equiv7\left(mod9\right)\)
=> \(A-7⋮9\)(3)
Từ (1); (2); (3) => S(S(S(A))) có thể bằng 7 hoặc 16
=> S(S(S(S(A)))) = 7
:)))) . Bài này thú vị quá! <3
Câu 2.
Câu hỏi của hoang the cuong - Toán lớp 8 - Học toán với OnlineMath
program chia_n;
uses crt;
var n,i:integer;
s:real;
begin
clrscr;
Write('Hay nhap so n ');readln(n);
s:=0;
for i:=1 to n do s:=s+1/i;
writeln('Tong la ',s:1:2);
readln;
end.
nhớ tick cho mik nha!
Ta giải như sau :
Ta có \(S\left(n\right)+n=2015\)(1)
\(\Rightarrow n< 2015\)(2)
Mặt khác ta lại có : \(S\left(n\right)\le1+9.3=28\)
\(\Rightarrow n\ge2015-28=1987\)(3)
Từ (2) và (3) ta có : \(1987\le n< 2015\)
Do đó ta xét n trong khoảng trên được n = 2011 và n = 1993 là đáp số của bài.
a,
\(2^2=\left(1+1\right)^2=1^2+2.1+1\)
\(3^2=\left(2+1\right)^2=2^2+2.2+1\)
....
\(\left(n+1\right)^2=n^2+2n+1\)
Cộng theo từng vế của các đẳng thức:
\(2^2+3^2+...+\left(n+1\right)^2=1^2+2^2+...+n^2+2\left(1+2+...+n\right)+n\)
\(\Leftrightarrow\left(n+1\right)^2=1+2S+n\)
\(\Leftrightarrow2S=\left(n+1\right)^2-\left(n+1\right)\)
\(\Leftrightarrow2S=\left(n+1\right)n\)
\(\Leftrightarrow S=\frac{n\left(n+1\right)}{2}\)
b, Tương tự a
\(2^3=\left(1+1\right)^3=1^3+3.1^2+3.1+1\)
\(3^3=\left(2+1\right)^3=2^3+3.2^2+3.2+1\)
...
\(\left(n+1\right)^3=n^3+3n^2+3n+1\)
Cộng theo từng vế của các đẳng thức:
\(2^3+3^3+...+\left(n+1\right)^3=1^3+2^3+...+n^3+3\left(1^2+2^2+...+n^2\right)+3\left(1+2+...+n\right)+n\)
\(\Leftrightarrow\left(n+1\right)^3=1+3S_1+3S+n\)
\(\Leftrightarrow\left(n+1\right)^3-\left(n+1\right)-3S=3S_1\)
\(3S_1=n\left(n+1\right)\left(n+2\right)-\frac{3n\left(n+1\right)}{2}\)
\(\Leftrightarrow3S_1=\frac{n\left(n+1\right)\left(2n+1\right)}{2}\)
\(\Leftrightarrow S_1=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\)