Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b)\(\sqrt{x^2-10x+25}=2x-3\) ĐK:x≥3/2
\(\Leftrightarrow\sqrt{\left(x-5\right)^2}=2x-3\)
\(\Leftrightarrow\left|x-5\right|=2x-3\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=2x-3\\x-5=3-2x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{8}{3}\end{matrix}\right.\)
Vậy phương trình có 2 nghiệm là ...
4:
a: góc OAT+góc OMT=180 độ
=>OATM nội tiếp
b: Xét ΔAMC và ΔEOD có
góc MAC=góc OED
góc MCA=góc EDO
=>ΔAMC đồng dạng với ΔEOD
\(1,\) Áp dụng HTL:
\(\left\{{}\begin{matrix}x^2=6\left(18+6\right)=144\\y^2=18\left(18+6\right)=432\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=12\\y=12\sqrt{3}\end{matrix}\right.\)
\(2,\\ a,AC=\sqrt{BC^2+AB^2}=5\left(cm\right)\left(pytago\right)\\ \sin\widehat{A}=\cos\widehat{C}=\dfrac{BC}{AC}=\dfrac{4}{5};\cos\widehat{A}=\sin\widehat{C}=\dfrac{AB}{AC}=\dfrac{3}{5}\\ \tan\widehat{A}=\cot\widehat{C}=\dfrac{BC}{AB}=\dfrac{4}{3};\cot\widehat{A}=\tan\widehat{C}=\dfrac{AB}{BC}=\dfrac{3}{4}\)
\(b,\sin\widehat{A}=\dfrac{4}{5}\approx\sin53^0\Leftrightarrow\widehat{A}\approx53^0\)
\(3,\\ \sin\widehat{E}=\sin36^0=\dfrac{DF}{DE}\approx0,6\Leftrightarrow DE\approx\dfrac{6}{0,6}=10\left(cm\right)\\ \Rightarrow FE=\sqrt{DE^2-DF^2}=8\left(cm\right)\left(pytago\right)\)
a: Xét (O) có
DA,DB là tiếp tuyến
nên OD là phân giác của góc AOB(1) và DA=DB
Xét (O) có
EA,EC là tiếp tuyến
nên OE là phân giác của góc COA(2) và EC=EA
Từ (1), (2) suy ra góc EOD=1/2*180=90 độ
b: DE=AD+AE
=>DE=BD+CE