Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A=\(\frac{1}{3}.5+\frac{1}{5}.7+...+\frac{1}{97}.99\)
=>A=\(\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)
=>2A=\(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}\)
=>2A=\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\)
=>2A=\(\frac{1}{3}-\frac{1}{99}=\frac{33}{99}-\frac{1}{99}=\frac{32}{99}\)
=>A=\(\frac{32}{99}:2=\frac{32}{99}.\frac{1}{2}=\frac{32}{198}=\frac{16}{99}\)
\(Cm:\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-...+\frac{99}{3^{99}}-\frac{100}{3^{100}}< \frac{3}{16}\)
Gọi biểu thức trên là A, ta có:
3A = 1-2/3+3/3^2-...-100/3^99
3A + A = [1-2/3+3/3^2-...-100/3^99] + [1/3-2/3^2+3/3^3-...-100/3^100]
4A = 1 - 1/3 + 1/3^2 - ... - 1/3^99 - 100/3^99 [1]
Gọi B = 1-1/3 + 1/3^2 - ... - 1/3^99
3B = 3 - 1 + 1/3 - 1/3^2 -...-1/3^2012
3B + B = [3-1+1/3-1/3^2-...-1/3^2012] + [1-1/3 + 1/3^2 - ... - 1/3^99]
4B = 3 - 1/3^99
=> 4B < 3 => B < 1/4 [2]
Từ [1], [2] => 4A < B < 3/4 => A < 3/16 [đpcm]
MỎI TAY QUỚ
tk nha
Lúc đặt câu hỏi, bạn bấm vào góc trên cùng bên trái để gõ phép tính đẹp. Ý của bạn có phải là:
\(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}< \frac{3}{16}\)
A<1-1/2+1/2-1/3+...+1/8-1/9=1-1/9=8/9
A>1/2-1/3+1/3-1/4+...+1/9-1/10=1/2-1/10=2/5
=>2/5<A<8/9
Nên đợi ai đó giải hết 2 3 bài xong rồi mới đăng tiếp những bài còn lại, chứ dài vậy giải hơi nản =)))
Bài 1:
1, \(13\frac{2}{5}-\left(\frac{18}{32}-2\frac{6}{10}\right)\)
\(=\frac{67}{5}-\left(\frac{9}{16}-\frac{13}{5}\right)\)(Chuyển hỗn số thành p/số và rút gọn hai số trong ngoặc luôn)
\(=\frac{67}{5}-\left(\frac{-163}{80}\right)\)
\(=\frac{246}{16}\)
2, \(22.4\frac{5}{7}-\left(8.91+1,09\right)\)(Phần 2 viết vầy có đúng không vậy ? Nếu sai thì kêu chị sửa nhé)
\(=22.\frac{33}{7}-10\)
\(=\frac{726}{7}-10\)
\(=\frac{656}{7}\)
3, Chỗ ''3 phần 10 phần 2'' là sao :v ?
4, \(5\frac{2}{7}.\frac{8}{11}+5\frac{2}{7}.\frac{5}{11}-5\frac{2}{7}.\frac{2}{11}\)
\(=\frac{37}{7}.\frac{8}{11}+\frac{37}{7}.\frac{5}{11}-\frac{37}{7}.\frac{2}{11}\)(Chuyển hỗn số thành p/số)
\(=\frac{37}{7}.\left(\frac{8}{11}+\frac{5}{11}-\frac{2}{11}\right)\)(Dùng tính chất phân phối)
\(=\frac{37}{7}.\frac{11}{11}\)
\(=\frac{37}{7}.1=\frac{37}{7}\)
Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\)
\(\Rightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(\Rightarrow A< 1-\frac{1}{50}\)
\(\Rightarrow A< \frac{49}{50}\)
Mà \(\frac{49}{50}< 1\)
\(\Rightarrow A< 1\)
Vậy A<1
\(\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{2}-\frac{1}{100}\)
\(\Rightarrow\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{2}\)
Gọi A = \(\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
=> A = \(\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{100.100}\)
A < \(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
A < \(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
A < \(\frac{1}{2}-\frac{1}{100}\)
A < \(\frac{49}{100}< \frac{50}{100}=\frac{1}{2}\)
=> A < \(\frac{1}{2}\)
<=> \(\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{2}\)